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A time-periodic driving field can be used to generate and control transport phenomena. Any transport coefficients in
the linear-response regime are restricted by the Onsager reciprocal relations, but these relations in periodically driven
systems have been poorly understood. In particular, the Onsager reciprocal relation in spin transport of periodically
driven systems is lacking despite the fact that it guarantees the detection of a spin current via the inverse spin Hall effect.
Here we establish the Onsager reciprocal relations for charge and spin transport in periodically driven systems. We
consider the time-averaged charge and spin off-diagonal dc conductivities �C

yx and �S
yx, which are the transport

coefficients for the charge and spin currents, respectively, perpendicular to the probe electric field in the nonequilibrium
steady state with the pump field of light. First, we argue the Onsager reciprocal relations for these conductivities with the
pump field of circularly, linearly, or bicircularly polarized light. We show that �C

yx and �S
yx satisfy the Onsager reciprocal

relations in all the cases considered, but their main terms depend on the polarization of light. In the case with circularly
or linearly polarized light, �C

yx is restricted to the antisymmetric or symmetric part, respectively, whereas �S
yx is restricted

to the antisymmetric part. Meanwhile, in the case with bicircularly polarized light, �C
yx and �S

yx are not restricted to either
the antisymmetric or symmetric parts generally. Then, we numerically study the Onsager reciprocal relations for �C

yx and
�S
yx in periodically driven Sr2RuO4 using the Floquet linear-response theory. Our numerical calculations validate our

general arguments. Therefore, the spin current generated in periodically driven systems is detectable by the inverse spin
Hall effect. Our numerical calculations also show that �C

yx cannot necessarily be regarded as the anomalous Hall
conductivity even with broken time-reversal symmetry, whereas �S

yx can be regarded as the spin Hall conductivity in all
the cases considered. Our results suggest that it is highly required to check whether or not the charge and spin off-
diagonal conductivities are dominated by the antisymmetric parts in discussing the anomalous Hall and spin Hall effects,
respectively. This study will become a cornerstone of theoretical and experimental studies of transport phenomena in
periodically driven systems.

1. Introduction

Periodically driven systems have opened a new way for
light-induced and light-controlled transport phenomena. In
general, systems are periodically driven by a time-periodic
field such as the pump field of light. Because of the time
periodicity, the periodically driven systems are described by
the Floquet Hamiltonian.1,2) Since this Hamiltonian can be
tuned by varying the parameters of the pump field, various
properties of the systems can be engineered without changing
the materials. This is called Floquet engineering.3–6) For
example, the pump field of circularly polarized light (CPL)
can be used to induce the anomalous Hall effect (AHE),7–11)

in which the charge current perpendicular to the probe field
is generated.12–14) Furthermore, the charge current generated
in this AHE can be changed in magnitude and direction by
varying the amplitude and helicity of CPL.7,8,10,11) Such
optical control is also possible for the spin Hall effect
(SHE),11,15) in which the spin current, the flow of the spin
angular momentum, is generated with the probe field
perpendicular to it.16–18)

Despite various studies of transport phenomena in periodi-
cally driven systems, the Onsager reciprocal relations in these
systems have been poorly understood. In general, the
Onsager reciprocal relations connect two transport coeffi-
cients.19–21) Therefore, these relations provide general con-
straints on the symmetry of transport coefficients. Such
constraints are useful for theoretical and experimental studies
of transport phenomena. Moreover, the Onsager reciprocal
relations are extremely important for spin transport. In

general, it is much harder to detect the spin current than the
charge current. Because of this, the spin current is usually
detected indirectly in experiments. In fact, the observation of
the inverse SHE can be regarded as the existence of the
SHE22,23) because their transport coefficients are connected
by the Onsager reciprocal relation; in the inverse SHE, the
charge current perpendicular to the spin current is gener-
ated.22,23) Although there are some studies of the Onsager
reciprocal relations in periodically driven systems,24–27) that
relation for spin transport has been unexplored yet.

In this paper, we theoretically study the Onsager reciprocal
relations for charge and spin transport in periodically driven
systems. The main results are summarized in Table I. We
consider the time-averaged charge and spin off-diagonal dc
conductivities �C

yx and �S
yx to describe the charge and spin

currents, respectively, perpendicular to the probe electric field
in the linear-response regime for the nonequilibrium steady
state of an electron system driven by the pump field of light.
Figure 1 shows the set-up for their measurements. We begin
with general arguments about the Onsager reciprocal
relations for �C

yx and �S
yx in the systems driven by CPL,

linearly polarized light (LPL), or bicircularly polarized light
(BCPL). Here BCPL consists of a linear combination of the
left- and right-handed CPL with different frequencies Ω and
�� and a relative phase difference θ28–30) (see Fig. 2). We
show that �C

yx and �S
yx satisfy the Onsager reciprocal relations

in all the cases considered, although their main terms depend
on the polarization of light. In the case with CPL or LPL, the
main term of �C

yx is given by the antisymmetric or symmetric
part, respectively, whereas that of �S

yx is given by the
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antisymmetric part. This suggests that the antisymmetric part
of �S

yx can be finite even with time-reversal symmetry,
whereas that of �C

yx is finite only without it. This difference
arises from the difference between the time-reversal symme-
tries of the charge and spin currents. Meanwhile, in the case
with BCPL, the Onsager reciprocal relations do not restrict
�C
yx and �S

yx to either the antisymmetric or symmetric parts
generally. This unusual property is due to the lack of a simple
relation between the pump field of BCPL and its time-
reversal counterpart. Then, we numerically test the Onsager
reciprocal relations for �C

yx and �S
yx by applying the Floquet

linear-response theory11) to a model of Sr2RuO4 driven by
CPL, LPL, or BCPL with weak coupling to a heat bath. We
demonstrate the validity of our arguments. Therefore, our
results indicate that, even for periodically driven systems, the
spin current can be detected by the inverse SHE. This is
useful to develop and observe many spintronics phenomena
in periodically driven systems. Then, our numerical calcu-
lations with BCPL show that the main term of �S

yx is given by
the antisymmetric part. Combining these results with the
results with CPL or LPL, we conclude that �S

yx can be
regarded as the spin Hall conductivity in all the cases
considered. Our numerical calculations with BCPL also show
that the main term of �C

yx depends on the magnitude, β, and θ
of the pump field. More precisely, �C

yx with BCPL for weak

magnitude is dominated by the antisymmetric part, whereas
that for moderately strong magnitude is almost vanishing in
the cases of ð�; �Þ ¼ ð2; 0Þ, ð2; �

2
Þ, ð2; �Þ, ð3; 0Þ, and ð3; �Þ or

dominated by the symmetric part in the cases of ð�; �Þ ¼
ð2; �

4
Þ, ð2; 3�

4
Þ, ð3; �

4
Þ, ð3; �

2
Þ, and ð3; 3�

4
Þ. Therefore, �C

yx cannot
necessarily be regarded as the anomalous Hall conductivity
even with broken time-reversal symmetry. Our results
suggest that it is necessary to check the main terms of �C

yx

and �S
yx in discussing the AHE and SHE, respectively.

The remainder of this paper is organized as follows.
In Sect. 2, we argue the Onsager reciprocal relations in
nondriven and periodically driven systems. After reviewing
these relations in nondriven systems, we derive the Onsager
reciprocal relations for �C

yx and �S
yx in the electron systems

driven by CPL, LPL, or BCPL. In Sect. 3, we introduce the
model of periodically driven Sr2RuO4. In this model, we
consider the heat bath as well as the system of Sr2RuO4

driven by the pump field of light and suppose that a
nonequilibrium steady state is realized due to the damping
induced by the coupling to the heat bath. The reason why
we choose Sr2RuO4 is twofold: its realistic model possesses
the finite spin off-diagonal dc conductivity, which is more
difficult to be realized than the finite charge off-diagonal dc
conductivity; and its electronic structure is so simple that the
Onsager reciprocal relations for these conductivities can be

Table I. The Onsager reciprocal relations for �C
yx and �S

yx in the
nonequilibrium steady states of systems driven by CPL, LPL, and BCPL.
�C
yx and �S

yx are the transport coefficients for the charge and spin currents,
respectively, along the y axis perpendicular to the probe electric field applied
along the x axis with the pump field ApumpðtÞ; �C

xy and ~�S
xy are those for the

charge currents along the x axis perpendicular to the probe electric and spin
fields, respectively, along the y axis with ApumpðtÞ; and ��C

xy and �~�S
xy are those

for the charge currents along the x axis perpendicular to the probe electric and
spin fields, respectively, along the y axis with Apumpð�tÞ. In the case with
CPL or LPL, �C

yx is restricted to the antisymmetric part ð�C
yx � �C

xyÞ=2
(corresponding to the anomalous Hall conductivity) or the symmetric part
ð�C

yx þ �C
xyÞ=2, respectively, whereas �S

yx is restricted to the antisymmetric part
ð�S

yx � ~�S
xyÞ=2 (corresponding to the spin Hall conductivity). (For the reason

why we have defined the antisymmetric part of �S
yx in this way, read the last

paragraph of Sect. 2.2.1.) Meanwhile, in the case with BCPL, �C
yx and �S

yx are
restricted to neither the antisymmetric nor symmetric parts generally.

CPL LPL BCPL

�C
yx �C

yx ¼ ��C
xy �C

yx ¼ �C
xy �C

yx ¼ ��C
xy

�S
yx �S

yx ¼ � ~�S
xy �S

yx ¼ � ~�S
xy �S

yx ¼ � �~�S
xy

Ru4+

Heat bath

Pump field

Probe field Charge or spin current

y

x

Fig. 1. (Color online) The setup for the pump-probe measurements of �C
yx

and �S
yx in our periodically driven systems. �C

yx and �S
yx are the transport

coefficients for describing the charge and spin currents, respectively, along
the y axis, which are perpendicular to the probe field applied along the x axis
in the nonequilibrium steady state with the pump field. The system is
periodically driven Sr2RuO4 and is coupled to the heat bath. In Sr2RuO4,
Ru4+ ions form the square lattice. This panel shows the case with the pump
field of BCPL; the cases with those of CPL and LPL are also considered.
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Fig. 2. (Color online) The trajectories of the pump field of BCPL at (a) � ¼ 2 and (b) � ¼ 3 and � ¼ 0, �
2
, or π. The three or four loops with the same color

are obtained per period of the pump field at � ¼ 2 or 3, respectively.
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numerically studied even in the case with BCPL. In Sect. 4,
we formulate �C

yx and �S
yx as well as their counterparts

appearing in the Onsager reciprocal relations using the
Floquet linear-response theory. We also comment on the
applicability of this theory. In Sect. 5, we show the numerical
results of the Onsager reciprocal relations for �C

yx and �S
yx in

Sr2RuO4 driven by CPL, LPL, or BCPL at � ¼ 2 and 3.
In Sect. 6, we discuss the origin of the characteristic θ
dependences of �C

yx and �S
yx in the cases with BCPL, compare

our results with other relevant studies, and remark on the
experimental realization of our results. In Sect. 7, we make
some concluding remarks on implications and outlooks.

2. Onsager Reciprocal Relations

We begin with general argument about the Onsager
reciprocal relations in nondriven or periodically driven
systems. We argue these relations for the charge and spin
off-diagonal dc conductivities in Sects. 2.1 and 2.2, respec-
tively. The results for periodically driven systems are
summarized in Table I. Although the Onsager reciprocal
relations in nondriven systems may be well known, we will
review them below to help the readers understand our general
arguments in periodically driven systems. Since the essential
symmetry in discussing the Onsager reciprocal relations is
the symmetry against a time-reversal operation,19–21) we will
not specify whether a certain vector is a vector or pseudo-
vector.

As we will show below, the charge and spin off-diagonal
dc conductivities satisfy the Onsager reciprocal relations in
all the cases considered, although there are some essential
differences due to the different time-reversal symmetries of
the charge and spin currents (Fig. 3). The following results
are valid in general as long as the probe field can be described
in the linear-response theory.

2.1 Charge off-diagonal dc conductivity
We argue the Onsager reciprocal relations for the charge

off-diagonal dc conductivity in nondriven or periodically
driven systems. In the following arguments, we suppose that
this conductivity is given by the correlation function between
the charge current operators. This is valid as long as the probe
field is of linear response.

2.1.1 Nondriven systems
First, we consider the nondriven case with a magnetic field

H. In general, the Onsager reciprocal relation connects the
transport coefficient for a certain transport phenomenon with
another for the transport phenomenon obtained by applying
the time-reversal operation to the original phenomenon.19–21)

Therefore, the Onsager reciprocal relation for the charge off-
diagonal dc conductivity with H is given by19–21)

�C
yxðHÞ ¼ ð�1Þ2�C

xyð�HÞ; ð1Þ
where �C

yxðHÞ is the charge off-diagonal dc conductivity for
the charge current JyC generated perpendicular to the probe
electric field Ex in the presence of H [i.e., JyC ¼ �C

yxðHÞEx],
and �C

xyð�HÞ is that for the charge current JxC generated
perpendicular to the probe electric field Ey in the presence
of �H [i.e., JxC ¼ �C

xyð�HÞEy]. The factor ð�1Þ2 in Eq. (1)
arises from the sign changes in the charge current operators
appearing in the charge off-diagonal dc conductivity under

the time-reversal operation [Fig. 3(a)]. Then, we suppose that
the charge off-diagonal dc conductivity satisfies �C

xyð�HÞ ¼
��C

xyðHÞ, which usually holds in the case with H ¼ ð0 0 HÞT.
By combining this relation with Eq. (1), the Onsager
reciprocal relation can be reduced to

�C
yxðHÞ ¼ ��C

xyðHÞ: ð2Þ
This is often called the Onsager reciprocal relation, but it has
been derived from a combination of the Onsager reciprocal
relation Eq. (1) and the additional symmetric property [i.e.,
�C
xyð�HÞ ¼ ��C

xyðHÞ]. This point is important to discuss
whether a certain transport coefficient satisfies the Onsager
reciprocal relation. If there is no such additional symmetric
property, whether the Onsager reciprocal relation holds
should be discussed using the equation such as Eq. (1); this
is true in the case with BCPL, as we will show in Sect. 2.1.2.

Next, we consider the nondriven case with magnetization
M. Since M breaks time-reversal symmetry (as H does), the
similar argument is applicable to this case; as a result, we
have

�C
yxðMÞ ¼ ð�1Þ2�C

xyð�MÞ ¼ ��C
xyðMÞ: ð3Þ

In driving this equation, we have supposed that �C
xyð�MÞ ¼

��C
xyðMÞ is satisfied.
In both cases, the charge off-diagonal dc conductivity has

only the antisymmetric part ð�C
yx � �C

xyÞ=2 and thus can be
regarded as the Hall conductivity, which is described by the
antisymmetric part. This antisymmetric part can be finite only
with broken time-reversal symmetry.19)

2.1.2 Periodically driven systems
We now argue the Onsager reciprocal relations in

periodically driven systems in two dimensions. To do this,
we consider the nonequilibrium steady state under the pump
field ApumpðtÞ with a time period Tp [i.e., Apumpðt þ TpÞ ¼
ApumpðtÞ] and discuss the symmetric properties of the time-
averaged charge off-diagonal dc conductivity [for its
definition, see Eq. (51) for Q = C with Eq. (52)]. The

(a)

(b)

Time reversal

JC JC-

JS JS

Time reversal

Fig. 3. (Color online) The changes in (a) the charge current JC and (b) the
spin current JS under the time-reversal operation. The up or down arrows
represent the spin-up or spin-down electrons, respectively. Here JC and JS
are defined as JC ¼ ð�eÞðJ" þ J#Þ and JS ¼ ðħ=2ÞðJ" � J#Þ, where J" and J#
are the currents of the spin-up and spin-down electrons, respectively. Under
the time-reversal operation, J" ! �J# and J# ! �J", resulting in JC !
�JC and JS ! JS.
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following arguments can be extended to any other periodi-
cally driven systems.

First, we discuss the Onsager reciprocal relation with the
pump field of left-handed CPL, ALCPLðtÞ, where

ALCPLðtÞ ¼ ðA0 cos�t A0 sin�tÞT; ð4Þ
and � ¼ 2�=Tp is the light frequency. In this case, the
Onsager reciprocal relation is given by

�C
yx½ALCPLðtÞ� ¼ ð�1Þ2�C

xy½ALCPLð�tÞ�; ð5Þ
where �C��½ApumpðtÞ� is the time-averaged charge off-diagonal
dc conductivity for the charge current J�C generated
perpendicular to the probe field E� with ApumpðtÞ [Figs. 4(a)–
4(c)]. Since ALCPLð�tÞ is equal to the pump field of right-
handed CPL,

ARCPLðtÞ ¼ ðA0 cos�t � A0 sin�tÞT; ð6Þ
Eq. (5) is rewritten as

�C
yx½ALCPLðtÞ� ¼ �C

xy½ARCPLðtÞ�: ð7Þ
Furthermore, we suppose that the time-averaged charge off-
diagonal dc conductivity changes its sign by switching the
helicity of light,11,27)

�C
xy½ARCPLðtÞ� ¼ ��C

xy½ALCPLðtÞ�: ð8Þ
This property can be understood in terms of the symmetry of
the charge current under the time-reversal operation, which
switches the helicity of light.11) Combining Eqs. (7) and (8),
we can reduce the Onsager reciprocal relation in this case
to

�C
yx½ALCPLðtÞ� ¼ ��C

xy½ALCPLðtÞ�: ð9Þ
Therefore, the time-averaged charge off-diagonal dc con-
ductivity with the pump field of CPL is restricted to be
antisymmetric. This has been numerically confirmed in
graphene driven by CPL.27)

Meanwhile, in systems driven by LPL, the time-averaged
charge off-diagonal dc conductivity is restricted to be
symmetric,

�C
yx½ALPLðtÞ� ¼ �C

xy½ALPLðtÞ�; ð10Þ
where the pump field of LPL, ALPLðtÞ, is given by

ALPLðtÞ ¼ ðA0 cos�t A0 cos�tÞT: ð11Þ
Equation (10) has been also numerically confirmed in
graphene driven by LPL.27)

The difference between Eqs. (9) and (10) is due to the
difference in time-reversal symmetry.27) Note that CPL can
break time-reversal symmetry,31) whereas LPL does not. We
will check Eqs. (9) and (10) for periodically driven Sr2RuO4

in Sect. 5.2.1.
The situation becomes different in the presence of the

pump field of BCPL,28–30) ABCPLðtÞ ¼ ðAxðtÞ AyðtÞÞT, where
AxðtÞ ¼ A0½cos�t þ cosð��t � �Þ�; ð12Þ
AyðtÞ ¼ A0½sin�t � sinð��t � �Þ�: ð13Þ

Figures 2(a) and 2(b) show the trajectories of ABCPLðtÞ per
period at � ¼ 2 and 3, respectively. In this case, the Onsager
reciprocal relation is written as

�C
yx½ABCPLðtÞ� ¼ ð�1Þ2�C

xy½ABCPLð�tÞ�; ð14Þ
where ABCPLð�tÞ ¼ ðAxð�tÞ Ayð�tÞÞT is given by

Axð�tÞ ¼ A0½cos�t þ cosð��t þ �Þ�; ð15Þ
Ayð�tÞ ¼ �A0½sin�t � sinð��t þ �Þ�: ð16Þ

Since ABCPLð�tÞ and ABCPLðtÞ are not connected by a simple
relation such as ALCPLð�tÞ ¼ ARCPLðtÞ, we cannot rewrite
Eq. (14) anymore in general. Therefore, in periodically
driven systems with BCPL, the time-averaged charge off-
diagonal dc conductivity is restricted to neither the
antisymmetric nor symmetric part generally. We will validate
this property numerically in Sect. 5.2.2.

JC
x

Ey

Apump(t)
(f) σ  xyS σxyS [A     (t)]pump=

y

x

S

~~

JC
x

Ey

(e) σ  xyS σxyS [A     (-t)]pump=

y

x

-

S

~~

Apump(-t)

JS
y

Ex

(d) σ  yxS σyxS [A     (t)]pump=

y

x

Apump(t)

JC
x

Ey

(b) σ  xyC σxyC [A     (-t)]pump=

y

x

-

Apump(-t)
JC
x

Ey

(c) σ  xyC σxyC [A     (t)]pump=

y

x

Apump(t)

JC
y

Ex

(a) σ  yxC σyxC [A     (t)]pump=

y

x

Apump(t)

Fig. 4. (Color online) The transport phenomena described by (a) �C
yx ¼ �C

yx½ApumpðtÞ�, (b) ��C
xy ¼ �C

xy½Apumpð�tÞ�, (c) �C
xy ¼ �C

xy½ApumpðtÞ�, (d) �S
yx ¼

�S
yx½ApumpðtÞ�, (e) �~�S

xy ¼ ~�S
xy½Apumpð�tÞ�, and (f ) ~�S

xy ¼ ~�S
xy½ApumpðtÞ�. The blue arrows represent the probe electric fields Ex and Ey and the probe spin field ES

y .
Here ES

y is given by, for example, the gradient of either the Zeeman field or a spin-dependent chemical potential; it can induce a spin current as the probe
electric field can induce a charge current. The orange arrows represent the charge currents JyC and JxC and the spin current JyS. The green arrows represent the
pump fields ApumpðtÞ and Apumpð�tÞ. The x and y axes are also drawn in these panels.
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2.2 Spin off-diagonal dc conductivity
We argue the Onsager reciprocal relations for the spin off-

diagonal dc conductivity. We suppose that this conductivity
is given by the correlation function between the charge
current and spin current operators. This is valid in the linear-
response regime of the probe field. Note that this conductivity
is different from that for describing the spin current generated
by the probe spin field, which is given by the correlation
function between the spin current operators.32,33) We also
suppose that the spin current remains unchanged under the
time-reversal operation. Therefore, the following arguments
are valid for any definition of the spin current as long as it is
symmetric with respect to the time-reversal operation. This
property against the time-reversal operation may be reason-
able because the spin current is the flow of the spin angular
momentum, such as JS ¼ ħ

2
ðJ" � J#Þ,11) where J� is the

current of spin-σ electrons [Fig. 3(b)].
In this paper, we define the spin current as the flow of the z

component of the spin angular momentum. In the following
arguments, we discuss the Onsager reciprocal relations about
the spin off-diagonal dc conductivities for the y component of
this spin current perpendicular to the probe field applied
along the x direction. Since the other components of the spin
current have the same time-reversal symmetry, the following
arguments can be applied to the spin off-diagonal dc
conductivities for the other components. Furthermore, they
can be extended to the spin off-diagonal dc conductivities for
another spin current, the flow of the x or y component of the
spin angular momentum. Namely, the following arguments
are sufficient to clarify the Onsager reciprocal relations about
the spin off-diagonal dc conductivities.

2.2.1 Nondriven systems
In the nondriven case with the magnetic field H, the spin

off-diagonal dc conductivity satisfies the Onsager reciprocal
relation,

�S
yxðHÞ ¼ ð�1Þ ~�S

xyð�HÞ; ð17Þ
where �S

yxðHÞ is the spin off-diagonal dc conductivity for the
spin current JyS generated perpendicular to the probe electric
field Ex in the presence of H [i.e., JyS ¼ �S

yxðHÞEx], and
~�S
xyð�HÞ is another for the charge current JxC generated

perpendicular to the probe spin field ES
y (e.g., the gradient of

the Zeeman field or of a spin-dependent chemical poten-
tial34)) in the presence of �H [i.e., JxC ¼ ~�S

xyð�HÞES
y ]. The

factor (−1) in Eq. (17) arises from the properties that the spin
off-diagonal dc conductivity is given by the correlation
function between the charge current and spin current
operators and that only the charge current operator changes
its sign under the time-reversal operation (Fig. 3). This minus
sign has been missing in some studies.35,36) Therefore, the
violation of the Onsager reciprocal relation claimed in
Ref. 36 may be due to the incorrect treatment about the
difference between time-reversal symmetries of the charge
and spin currents. Then, Eq. (17) shows that the counterpart
connected by the Onsager reciprocal relation for �S

yxðHÞ is not
�S
xyð�HÞ, but ~�S

xyð�HÞ, where �S
xyð�HÞ is the spin off-

diagonal dc conductivity for the spin current JxS generated
perpendicular to the probe electric field Ey in the presence of
�H [i.e., JxS ¼ �S

xyð�HÞEy]. This is because the transport
coefficient for a certain transport phenomenon is connected

by the Onsager reciprocal relation with that for the transport
phenomenon obtained by applying the time-reversal oper-
ation to the original phenomenon,19–21) as explained above.

The similar Onsager reciprocal relation holds in the
nondriven case with the magnetization M:

�S
yxðMÞ ¼ ð�1Þ ~�S

xyð�MÞ: ð18Þ
These results are consistent with some previous stud-

ies,34,37) although the origin of the minus sign appearing in
the Onsager reciprocal relation is different.

Because of Eq. (17) or (18), the spin off-diagonal dc
conductivity has the antisymmetric part ð�S

yx � ~�S
xyÞ=2 even

with no magnetic field and thus can be regarded as the spin
Hall conductivity. This is the most important difference
between the spin and charge off-diagonal dc conductivities:
the former possesses the antisymmetric part even with time-
reversal symmetry, whereas the latter is restricted to the
symmetric part with this symmetry. We have defined the
antisymmetric part of �S

yx as not ð�S
yx � �S

xyÞ=2, but ð�S
yx �

~�S
xyÞ=2 because the latter corresponds to the spin Hall

conductivity for describing the spin current along the y axis
with the probe electric field applied along the x axis. This
can be understood if we recall its expression in nondriven
systems with no dissipation; in these systems, the spin
Hall conductivity is expressed in terms of the spin Berry
curvature the numerator of which is proportional to
Im½hk�jJxCjk�ihk�jJySjk�i�, where hk�jJxCjk�i and
hk�jJySjk�i are the expectation values of the charge and
spin current operators, respectively, over the states at
momentum k for band indices α and β (≠ �). Note that in
the linear-response theory, �S

yx and ~�S
xy are given by the

correlation functions between JyS and JxC, whereas �
S
xy is given

by that between JxS and JyC. Therefore, ð�S
yx � ~�S

xyÞ=2 describes
the SHE in the case of the spin current generated along the y
axis. If the difference between the time-reversal symmetries
of the charge and spin currents were neglected, the spin off-
diagonal dc conductivity would have only the symmetric
part. The above arguments show that a naive analogy with
the Onsager reciprocal relation for the charge transport is
incorrect to discuss the Onsager reciprocal relation for the
spin transport.

2.2.2 Periodically driven systems
We turn to the cases of the periodically driven systems in

two dimensions. In the following, we discuss the symmetric
properties of the time-averaged spin off-diagonal dc con-
ductivity in the nonequilibrium steady state under ApumpðtÞ.
[For its definition, see Eq. (51) for Q = S with Eq. (52).] The
arguments for any other periodically driven systems can be
made in a similar way.

In the case with the pump field of left-handed CPL, the
Onsager reciprocal relation for the time-averaged spin off-
diagonal dc conductivity is given by

�S
yx½ALCPLðtÞ� ¼ ð�1Þ ~�S

xy½ALCPLð�tÞ�; ð19Þ
where �S

yx½ALPCLðtÞ� is the time-averaged spin off-diagonal dc
conductivity for the spin current JyS generated perpendicular
to the probe electric field Ex with ALCPLðtÞ [Fig. 4(d)], and
~�S
xy½ALCPLð�tÞ� is another for the charge current JxC generated

perpendicular to the probe spin field ES
y with ALCPLð�tÞ

[Fig. 4(e)]. Since ALCPLð�tÞ ¼ ARCPLðtÞ, we have
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�S
yx½ALCPLðtÞ� ¼ � ~�S

xy½ARCPLðtÞ�: ð20Þ
Similarly, we have

�S
yx½ARCPLðtÞ� ¼ � ~�S

xy½ALCPLðtÞ�: ð21Þ
In addition, the time-averaged spin off-diagonal dc con-
ductivity is independent of the helicity of light,11)

�S
yx½ALCPLðtÞ� ¼ �S

yx½ARCPLðtÞ�: ð22Þ
This equation can be understood in terms of the symmetry
of the spin current under the time-reversal operation.11)

Combining Eq. (22) with Eqs. (20) and (21), we obtain the
Onsager reciprocal relation in this case,

�S
yx½ALCPLðtÞ� ¼ � ~�S

xy½ALCPLðtÞ�: ð23Þ
For ~�S

xy½ALCPLðtÞ�, see Fig. 4(f ).
The similar Onsager reciprocal relation is satisfied with the

pump field of LPL:

�S
yx½ALPLðtÞ� ¼ � ~�S

xy½ALPLðtÞ�: ð24Þ
Therefore, the time-averaged spin off-diagonal dc con-

ductivity is restricted to be antisymmetric in the periodically
driven system with the pump field of CPL or LPL. We will
check this property numerically in Sect. 5.1.1.

In the case with the pump field of BCPL, the Onsager
reciprocal relation for the time-averaged spin off-diagonal dc
conductivity reads

�S
yx½ABCPLðtÞ� ¼ � ~�S

xy½ABCPLð�tÞ�: ð25Þ
As well as Eq. (14), this equation cannot be rewritten
anymore in general. However, as we will show in Sect. 5.1.2,
the antisymmetric part dominates the time-averaged spin off-
diagonal dc conductivity in the nonequilibrium steady states
with BCPL. This is different from the result of the time-
averaged charge off-diagonal dc conductivity with BCPL (see
Sect. 5.2.2).

3. Model

To show the validity of our general arguments made in
Sect. 2, we consider a concrete model and analyze its time-
averaged spin and charge off-diagonal dc conductivities.
Sections 3, 4, and 5 are devoted to this analysis.

In this section, we introduce the concrete model for
periodically driven electron systems. As the concrete model,
we consider a periodically driven multiorbital metal with
weak coupling to a heat bath. Our model Hamiltonian
consists of three parts:11)

HðtÞ ¼ HsðtÞ þ Hb þ Hsb; ð26Þ
where HsðtÞ is the system Hamiltonian, Hb is the bath
Hamiltonian, and Hsb is the system-bath coupling
Hamiltonian. As HsðtÞ, we have considered the periodically
driven Sr2RuO4 because it is suitable for achieving the finite
time-averaged spin and charge off-diagonal dc conductiv-
ities.11) In addition to HsðtÞ, we have considered Hb and Hsb

because we suppose that our periodically driven system can
reach a nonequilibrium steady state due to the coupling
with the heat bath.8,11,38) If such a relaxation mechanism is
absent, a periodically driven system reaches an infinite-
temperature state due to the heating of the pump field.39,40)

Hereafter, we use the unit ħ ¼ kB ¼ c ¼ aNN ¼ 1, where

aNN is the distance between nearest-neighbor sites on a
square lattice.

3.1 System Hamiltonian HsðtÞ
HsðtÞ consists of the hopping integrals between t2g-

orbital electrons in the presence of a light field AðtÞ, the
chemical potential μ, and the atomic SOC (i.e., the LS

coupling):

HsðtÞ ¼
X
i; j

X
a;b¼dyz;dzx;dxy

X
�¼";#

½tabij ðtÞ � 	
i;j
a;b�cyia�cjb�

þ
X
i

X
a;b¼dyz;dzx;dxy

X
�;�0¼";#

���
0

ab c
y
ia�cib�0 ; ð27Þ

where cyia� and cia� are the creation and annihilation
operators, respectively, of an electron for orbital a and spin
σ at site i, tabij ðtÞ’s are the hopping integrals with the Peierls
phase factor due to AðtÞ,

tabij ðtÞ ¼ tabij e
�ieðRi�RjÞ�AðtÞ; ð28Þ

tabij ’s are the hopping integrals in the nondriven system, and
���

0
ab ¼ ð��0�ba Þ� is the coupling constant of the SOC for t2g-
orbital electrons, the finite components of which are given
by

�""dyzdzx ¼ �"#dzxdxy ¼ ��"#dxydzx ¼ ��##dyzdzx ¼ i�=2; ð29Þ
�"#dxydyz ¼ ��"#dyzdxy ¼ �=2: ð30Þ

Using the Fourier transformation of the operators, we have

HsðtÞ ¼
X
k

X
a;b¼dyz;dzx;dxy

X
�;�0¼";#

����
0

ab ðk; tÞcyka�ckb�0 ; ð31Þ

where

����0
ab ðk; tÞ ¼ ½�abðk; tÞ � 	
a;b�
�;�0 þ ���

0
ab ; ð32Þ

and

�abðk; tÞ ¼
X
j

tabij e
�i½kþeAðtÞ��ðRi�RjÞ: ð33Þ

We choose the parameters of HsðtÞ to reproduce the
electronic structure of Sr2RuO4 near the Fermi level. The
hopping integrals tabij ’s in Eq. (28) are parametrized by t1,
t2, t3, t4, and t5;11,41,42) the first three ones are nearest-
neighbor terms, and the others are next-nearest-neighbor
ones [Fig. 5(a)]. We choose their values as follows:
ðt1; t2; t3; t4; t5Þ ¼ ð0:675; 0:09; 0:45; 0:18; 0:03Þ (eV).41) We
also set � ¼ 0:17 eV.43) Then, we determine μ from the
condition that the electron number per site is four; the value
of μ is fixed at that determined for AðtÞ ¼ 0 in the analyses
shown in Sect. 5. Figures 5(b) and 5(c) show the band
structure and Fermi surface of our model for Sr2RuO4 with
AðtÞ ¼ 0. The obtained Fermi surface is consistent with
that observed experimentally in nondriven Sr2RuO4.44) Note
that Sr2RuO4 is a material with the simple electronic struc-
ture in which the spin off-diagonal dc conductivity is
finite.45,46)

3.2 Bath Hamiltonian Hb

Hb is the Hamiltonian for the Büttiker-type heat
bath:8,11,38,47,48)

Hb ¼
X
i

X
p

ð�p � 	bÞbyipbip; ð34Þ
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where byip and bip are the creation and annihilation operators,
respectively, of a bath’s fermion for mode p at site i, �p is the
energy of a bath’s fermion, and 	b is its chemical potential.
	b is determined in order that there is no current between
the system and bath. This heat bath is supposed to be in
equilibrium at temperature Tb.

3.3 System-bath coupling Hamiltonian Hsb

Hsb describes the coupling between the system and
bath:8,11,38)

Hsb ¼
X
i

X
p

X
a¼dyz;dzx;dxy

X
�¼";#

Vpa�ðcyia�bip þ byipcia�Þ; ð35Þ

where Vpa� is the coupling constant. In this study, we treat the
effects of Hsb as second-order perturbation. As a result, its
main effect can be reduced to the damping.8,11,38) Because
of this damping, a nonequilibrium steady state could be
achieved.8,11,38)

4. Floquet Linear-response Theory

In this section, we formulate the time-averaged spin and
charge off-diagonal dc conductivities in the nonequilibrium
steady states of our periodically driven systems by using the
Floquet linear-response theory.8,11,27,30,38,49) In this theory,
we set AðtÞ ¼ ApumpðtÞ þ AprobðtÞ and treat the effects of
ApumpðtÞ in the Floquet theory1,2) and those of AprobðtÞ in the
linear-response theory.21) Therefore, this is a theory for the
pump-probe measurements50) in which the spin or charge
current is generated perpendicular to the probe field with the
pump field (Fig. 1). In addition, this theory is a natural
extension of the Kubo formula21) for nondriven systems to
the periodically driven systems.

4.1 Time-averaged spin and charge off-diagonal dc
conductivities �S

yx and �C
yx

Since the effects of AprobðtÞ are treated in the linear-
response theory,21) the spin and charge off-diagonal dc
conductivities as functions of time, �S

yxðt; t 0Þ and �C
yxðt; t 0Þ, are

given by11)

�S
yxðt; t 0Þ ¼

1

i!


h j ySðtÞi

Ax

probðt 0Þ
; ð36Þ

�C
yxðt; t 0Þ ¼

1

i!


h j yCðtÞi

Ax

probðt 0Þ
; ð37Þ

where h j ySðtÞi and h j yCðtÞi are the expectation values of the
operators of the spin current and charge current densities,
respectively. These expectation values should be taken over
the states with both the pump and probe fields. Then, the
operators of the spin and charge currents are given by11)

JySðtÞ ¼
X
k

X
a;b

X
�

vðSÞyab� ðk; tÞcyka�ðtÞckb�ðtÞ; ð38Þ

JyCðtÞ ¼
X
k

X
a;b

X
�

vðCÞyab� ðk; tÞcyka�ðtÞckb�ðtÞ; ð39Þ

where

vðSÞ�ab� ðk; tÞ ¼
1

2
sgnð�Þ @�abðk; tÞ

@k�
; ð40Þ

vðCÞ�ab� ðk; tÞ ¼ ð�eÞ @�abðk; tÞ
@k�

; ð41Þ

and sgnð�Þ ¼ 1 or −1 for � ¼ " or ↓, respectively. Note that
Eqs. (38) and (39) can be derived by using the continuity
equations.11) We also note that JySðtÞ ¼ NjySðtÞ and JyCðtÞ ¼
NjyCðtÞ in our model due to V ¼ Na2NN ¼ N, where V is the
volume of the system.
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Fig. 5. (Color online) (a) The nearest neighbor and next nearest neighbor hopping integrals for the t2g-orbital electrons of Ru ions on the square lattice. The
dyz, dzx, and dxy correspond to the dyz, dzx, and dxy orbitals, respectively. (b) The band structure and (c) Fermi surface of our model for nondriven Sr2RuO4 at
Tb ¼ 0:02 eV for a Nx � Ny mesh with Nx ¼ Ny ¼ 100. In panel (b), the energies are measured from the chemical potential μ.
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�S
yxðt; t 0Þ and �C

yxðt; t 0Þ can be expressed in terms
of nonequilibrium Green’s functions.11,49) Substituting
Eqs. (38) and (39) into Eqs. (36) and (37), respectively, we
have

�S
yxðt; t 0Þ ¼ �Sð1Þ

yx ðt; t 0Þ þ �Sð2Þ
yx ðt; t 0Þ; ð42Þ

�C
yxðt; t 0Þ ¼ �Cð1Þ

yx ðt; t 0Þ þ �Cð2Þ
yx ðt; t 0Þ; ð43Þ

where �Qð1Þ
yx ðt; t 0Þ and �Qð2Þ

yx ðt; t 0Þ (Q = S or C) are given by

�Qð1Þ
yx ðt; t 0Þ ¼ �1

!N

X
k

X
a;b

X
�


vðQÞyab� ðk; tÞ

Ax

probðt 0Þ
G<

b�a�ðk; t; tÞ; ð44Þ

�Qð2Þ
yx ðt; t 0Þ ¼ �1

!N

X
k

X
a;b

X
�

vðQÞyab� ðk; tÞ

G<

b�a�ðk; t; tÞ

Ax

probðt 0Þ
; ð45Þ

and G<
b�0a�ðk; t; t 0Þ is the lesser Green’s function,11,51–53)

G<
b�0a�ðk; t; t 0Þ ¼ ihcyka�ðt 0Þckb�0 ðtÞi: ð46Þ

We emphasize that the group velocities and Green’s function
appearing in the right-hand sides of Eqs. (44) and (45) are
those with only the pump field (i.e., no probe field). This is
an advantage of the linear-response theory.21) In periodically
driven cases, these quantities and the transport coefficients
are of nonequilibrium. Meanwhile, in nondriven cases, these
quantities are of equilibrium, although the transport coef-
ficients are of nonequilibrium; this is sometimes misunder-
stood as if the transport coefficients were also of equilibrium.
To rewrite Eq. (45), we use the equation,


G<
b�a�ðk; t; tÞ

Ax

probðt 0Þ
¼ �

X
c;d

X
�0

vðCÞxcd�0 ðk; t 0Þ½GR
b�c�0 ðk; t; t 0ÞG<

d�0a�ðk; t 0; tÞ

þG<
b�c�0 ðk; t; t 0ÞGA

d�0a�ðk; t 0; tÞ�; ð47Þ
where GR

a�b�0 ðk; t; t 0Þ and GA
a�b�0 ðk; t; t 0Þ are the retarded and

advanced Green’s functions,11,51–53)

GR
a�b�0 ðk; t; t 0Þ ¼ �i�ðt � t 0Þhfcka�ðtÞ; cykb�0 ðt 0Þgi; ð48Þ

GA
a�b�0 ðk; t; t 0Þ ¼ i�ðt 0 � tÞhfcka�ðtÞ; cykb�0 ðt 0Þgi: ð49Þ

Note that Eq. (47) is obtained by using the Dyson equation of
the Green’s functions and the Langreth rule.8,54,55) Substitut-
ing Eq. (47) into Eq. (45), we get

�Qð2Þ
yx ðt; t 0Þ ¼ 1

!N

X
k

X
a;b;c;d

X
�;�0

vðQÞyab� ðk; tÞvðCÞxcd�0 ðk; t 0Þ

� ½GR
b�c�0 ðk; t; t 0ÞG<

d�0a�ðk; t 0; tÞ
þ G<

b�c�0 ðk; t; t 0ÞGA
d�0a�ðk; t 0; tÞ�: ð50Þ

The spin transport and charge transport in a nonequilib-
rium steady state of our periodically driven system can be
described by the time-averaged spin and charge off-diagonal
dc conductivities �S

yx and �C
yx, respectively [see Figs. 4(d) and

4(a)]. �Q
yx (Q = S or C) is defined as

�Q
yx ¼ lim

!!0
�Q
yxð!Þ; ð51Þ

where

�Q
yxð!Þ ¼ Re

Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�Q
yxðt; t 0Þ; ð52Þ

trel ¼ t � t 0, and tav ¼ ðt þ t 0Þ=2. Note that the dc limit ! ! 0

can be appropriately taken in the same way as for nondriven
systems because the probe frequency ω is coupled to trel in
the Fourier transformation, whereas the time average is taken
with respect to tav. In Eq. (52), we have considered only
the real part because we focus on the time-averaged dc
conductivities in this paper. To calculate �Q

yxð!Þ, we use the
Floquet representation of the Green’s functions.11,56) In
general, the Green’s functions in a periodically driven system
depend not only on trel, but also on tav. Because of this
property, we should perform two transformations to convert
the Green’s functions into the frequency functions:

Gr
a�b�0;nðk;!Þ ¼

Z 1

�1
dtrel e

i!trel

Z Tp

0

dtav
Tp

ein�tavGr
a�b�0 k; tav þ trel

2
; tav � trel

2

� �
; ð53Þ

where Gr
a�b�0;nðk;!Þ’s (r = R, A, <) are defined in the range of �1 < ! < 1. Since our Hamiltonian has the discrete time

translation symmetry, we can restrict the range of frequency to � �
2
� ! < �

2
. This property can be taken into account by

performing another transformation:

½Gr
a�b�0 ðk; !Þ�mn ¼ Gr

a�b�0;m�n k;! þ m þ n

2
�

� �
; ð54Þ

where ½Gr
a�b�0 ðk; !Þ�mn’s (� �

2
� ! < �

2
) are the Green’s functions in the Floquet representation.11,56) By combining Eqs. (52),

(42)–(44), and (50) and using the Floquet representation of the Green’s functions, we obtain

�Q
yxð!Þ ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
�
tr vðQÞyab� ðkÞ

GR
b�c�0 ðk; !0 þ !Þ � GR

b�c�0 ðk; !0 � !Þ
2!

vðCÞxcd�0 ðkÞG<
d�0a�ðk; !0Þ

� �

� tr vðQÞyab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞ

GA
d�0a�ðk; !0 þ !Þ � GA

d�0a�ðk; !0 � !Þ
2!

� ��
; ð55Þ

where trðABCDÞ ¼P1
m;l;n;q¼�1½A�ml½B�ln½C�nq½D�qm, and m, l, n, and q are indices in the Floquet representation. For the

derivation of Eq. (55), see Appendix A. Note that ½vðQÞ�ab� ðkÞ�mn (� ¼ x; y) is given by

½vðQÞ�ab� ðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�tvðQÞ�ab� ðk; tÞ; ð56Þ
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where vðSÞ�ab� ðk; tÞ and vðCÞ�ab� ðk; tÞ have been defined in Eqs. (40) and (41), respectively. Combining Eq. (55) with Eq. (51), we
get

�S
yx ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr vðSÞyab� ðkÞ

@GR
b�c�0 ðk; !0Þ
@!0 vðCÞxcd�0 ðkÞG<

d�0a�ðk; !0Þ
� �

� tr vðSÞyab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞ

@GA
d�0a�ðk; !0Þ
@!0

� ��
; ð57Þ

and

�C
yx ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr vðCÞyab� ðkÞ

@GR
b�c�0 ðk; !0Þ
@!0 vðCÞxcd�0 ðkÞG<

d�0a�ðk; !0Þ
� �

� tr vðCÞyab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞ

@GA
d�0a�ðk; !0Þ
@!0

� ��
: ð58Þ

The Green’s functions appearing in Eqs. (57) and (58) can
be determined in the following way. For our periodically
driven system, the Green’s functions are determined from the
Dyson equation in the matrix form,11,52,57)

G ¼ G0 þ G0�G; ð59Þ
where G is the matrix of the Green’s functions with Hsb,

G ¼ GR GK

0 GA

 !
; ð60Þ

G0 is the matrix of the Green’s functions without Hsb,

G0 ¼
GR

0 GK
0

0 GA
0

 !
; ð61Þ

and Σ is the matrix of the self-energies due to the second-
order perturbation with respect to Hsb,

� ¼ �R �K

0 �A

 !
: ð62Þ

In Eqs. (60)–(62), the superscripts R, A, and K represent the
retarded, advanced, and Keldysh components, respectively.
These three components are related to the lesser component
as follows:

G< ¼ 1

2
ðGK � GR þGAÞ: ð63Þ

The retarded, advanced, and Keldysh components of the
self-energies can be obtained by using the second-order
perturbation theory; the results are

½�R
a�b�0 ðk; !Þ�mn ¼ �i
m;n
a;b
�;�0�; ð64Þ

½�A
a�b�0 ðk; !Þ�mn ¼ þi
m;n
a;b
�;�0�; ð65Þ

½�K
a�b�0 ðk; !Þ�mn ¼ �2i
m;n
a;b
�;�0� tanh

! þ m�

2Tb
; ð66Þ

where Γ is the damping. In deriving these equations, we have
omitted the real parts and replaced �

P
p Vpa�Vpb�0
ð! þ

m� � �p þ 	bÞ by �
a;b
�;�0 for simplicity.11) Such simplifi-
cation may be sufficient because the main effect of Hsb is to
induce the damping, which makes the system the nonequi-
librium steady state.8,11,38) Then, Eq. (59) can be rewritten
as

G�1 ¼ G�1
0 � �; ð67Þ

where

G�1 ¼ ðG�1ÞR ðG�1ÞK
0 ðG�1ÞA

 !
; ð68Þ

G�1
0 ¼ ðG�1

0 ÞR ðG�1
0 ÞK

0 ðG�1
0 ÞA

 !
: ð69Þ

For our model, the retarded, advanced, and Keldysh
components of the matrix G�1 are given by

½ðG�1ÞRa�b�0 ðk; !Þ�mn ¼ ð! þ 	 þ m� þ i�Þ
m;n
a;b
�;�0

� ���
0

ab 
m;n � ½�abðkÞ�mn
�;�0 ; ð70Þ
½ðG�1ÞAa�b�0 ðk; !Þ�mn ¼ ð! þ 	 þ m� � i�Þ
m;n
a;b
�;�0

� ���
0

ab 
m;n � ½�abðkÞ�mn
�;�0 ; ð71Þ

½ðG�1ÞKa�b�0 ðk; !Þ�mn ¼ 2i
m;n
a;b
�;�0� tanh
! þm�

2Tb
; ð72Þ

where

½�abðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�t�abðk; tÞ: ð73Þ

For ½�abðkÞ�mn of Sr2RuO4 driven by BCPL, see
Appendix B; for that of Sr2RuO4 driven by CPL or LPL,
see Ref. 11. In deriving Eq. (72), we have chosen the
Keldysh component of the matrix G�1

0 to be zero because
it contains the information about the initial condition. This
treatment may be valid to describe a nonequilibrium steady
state with finite damping7,8,11,38) because a nonequilibrium
steady state should be independent of a choice of the initial
condition. Note that the retarded and advanced components
of the matrix G�1

0 are obtained by replacing Γ in Eqs. (70)
and (71), respectively, by a positive infinitesimal. Because of
the matrix relation G�1G ¼ 1, the components of the inverse
matrices satisfy

ðGRÞ�1 ¼ ðG�1ÞR; ð74Þ
ðGAÞ�1 ¼ ðG�1ÞA; ð75Þ
GK ¼ �GRðG�1ÞKGA: ð76Þ

Therefore, we can obtain the retarded and advanced Green’s
functions with Hsb by using Eqs. (70) and (74) and Eqs. (71)
and (75), respectively. We can also calculate the Keldysh
Green’s function with Hsb by combining Eq. (76) with
Eq. (72) and the obtained retarded and advanced Green’s
functions. Using Eq. (63) and the obtained three Green’s
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functions, we finally obtain the lesser Green’s function with
Hsb.

4.2 The other off-diagonal dc conductivities ~�S
xy, �

C
xy, �~�

S
xy,

and ��C
xy

To discuss the Onsager reciprocal relations, we need to

consider ~�S
xy and �C

xy. Here ~�S
xy or �

C
xy is the time-averaged off-

diagonal dc conductivity for the charge current along the
x axis perpendicular to the probe spin field or electric field,
respectively, applied along the y axis with the pump field
ApumpðtÞ [see Figs. 4(f ) and 4(c)]. These conductivities are
given by

~�S
xy ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr vðCÞxab� ðkÞ

@GR
b�c�0 ðk; !0Þ
@!0 vðSÞycd�0 ðkÞG<

d�0a�ðk; !0Þ
� �

� tr vðCÞxab� ðkÞG<
b�c�0 ðk; !0ÞvðSÞycd�0 ðkÞ

@GA
d�0a�ðk; !0Þ
@!0

� ��
; ð77Þ

and

�C
xy ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr vðCÞxab� ðkÞ

@GR
b�c�0 ðk; !0Þ
@!0 vðCÞycd�0 ðkÞG<

d�0a�ðk; !0Þ
� �

� tr vðCÞxab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞycd�0 ðkÞ

@GA
d�0a�ðk; !0Þ
@!0

� ��
: ð78Þ

Here Eq. (77) has been obtained by replacing vðSÞyab� ðkÞ’s and vðCÞxcd�0 ðkÞ’s in Eq. (57) by vðCÞxab� ðkÞ’s and vðSÞycd�0 ðkÞ’s, respectively;
and Eq. (78) has been obtained by replacing vðCÞyab� ðkÞ’s and vðCÞxcd�0 ðkÞ’s in Eq. (58) by vðCÞxab� ðkÞ’s and vðCÞycd�0 ðkÞ’s, respectively. The
quantities appearing in Eqs. (77) and (78) can be determined in the same way as those appearing in Eqs. (57) and (58).

In addition, we need to consider �~�S
xy and ��C

xy. Here �~�S
xy or ��

C
xy is the time-averaged off-diagonal dc conductivity for the charge

current along the x axis perpendicular to the probe spin field or electric field, respectively, applied along the y axis with the
pump field Apumpð�tÞ [see Figs. 4(e) and 4(b)]. These conductivities are given by

�~�S
xy ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr �vðCÞxab� ðkÞ

@ �GR
b�c�0 ðk; !0Þ
@!0 �vðSÞycd�0 ðkÞ �G<

d�0a�ðk; !0Þ
� �

� tr �v ðCÞx
ab� ðkÞ �G<

b�c�0 ðk; !0Þ �v ðSÞy
cd�0 ðkÞ @

�GA
d�0a�ðk; !0Þ
@!0

� ��
; ð79Þ

and

��C
xy ¼

1

N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

�
tr �v ðCÞx

ab� ðkÞ
@ �GR

b�c�0 ðk; !0Þ
@!0 �vðCÞycd�0 ðkÞ �G<

d�0a�ðk; !0Þ
� �

� tr �v ðCÞx
ab� ðkÞ �G<

b�c�0 ðk; !0Þ �vðCÞycd�0 ðkÞ
@ �GA

d�0a�ðk; !0Þ
@!0

� ��
: ð80Þ

Here ½ �v ðQÞ�
ab� ðkÞ�mn (� ¼ x; y) is given by

½ �vðQÞ�ab� ðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�tvðQÞ�ab� ðk;�tÞ; ð81Þ

and ½ �Gr
a�b�0 ðk; !Þ�mn’s are determined by replacing Eqs. (70)–(76) by

½ð �G�1ÞRa�b�0 ðk; !Þ�mn ¼ ð! þ 	 þm� þ i�Þ
m;n
a;b
�;�0 � ���
0

ab 
m;n � ½ ��abðkÞ�mn
�;�0 ; ð82Þ
½ð �G�1ÞAa�b�0 ðk; !Þ�mn ¼ ð! þ 	 þm� � i�Þ
m;n
a;b
�;�0 � ���

0
ab 
m;n � ½ ��abðkÞ�mn
�;�0 ; ð83Þ

½ð �G�1ÞKa�b�0 ðk; !Þ�mn ¼ 2i
m;n
a;b
�;�0� tanh
! þm�

2Tb
; ð84Þ

½ ��abðkÞ�mn ¼
Z Tp

0

dt

Tp
eiðm�nÞ�t�abðk;�tÞ; ð85Þ

ð �GRÞ�1 ¼ ð �G�1ÞR; ð86Þ
ð �GAÞ�1 ¼ ð �G�1ÞA; ð87Þ

�GK ¼ � �GRð �G�1ÞK �GA; ð88Þ
and performing the similar procedures to those used to
determine ½Gr

a�b�0 ðk; !Þ�mn’s. Namely, the group velocities
and Green’s functions appearing in Eqs. (79) and (80) are
calculated with Apumpð�tÞ in the similar way to those with

ApumpðtÞ. For ½ ��abðkÞ�mn of Sr2RuO4 driven by BCPL, see
Appendix C.

4.3 General remarks about the applicability
First, the Floquet linear-response theory is applicable to the

periodically driven systems under the application of the pump
field. This is because the discrete time translational symmetry
is utilized in the Floquet theory.

Then, our theory has wider applicability than the theories
using a high-frequency expansion. This expansion has been
often used to analyze many periodically driven sys-
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tems.3,8,30,58,59) It may be sufficient for a periodically driven
electron system if the light frequency is much larger than the
bandwidth of the system. Meanwhile, our theory does not
have such a restriction because the Floquet theory used here
is free from the constraint on the frequency.

The applicability of our theory is also wider than that of
the theories in which the time-averaged off-diagonal dc
conductivities are expressed in terms of the Berry curvature.
In the limit � ! 0, these conductivities could be linked to the
Berry curvature.7,8) This is similar to the AHE and SHE in
nondriven systems.60–62) However, for finite Γ, the anom-
alous Hall or spin Hall conductivity in nondriven systems
contains not only the Berry-curvature term, but also the
others, including the so-called Fermi-surface term,60–63)

which is distinct from the Berry-curvature term. Furthermore,
the Fermi-surface term dominates the intrinsic AHE and SHE
at finite Γ.46,60–62) The similar crossover can be realized
for the Hall conductivity with the magnetic field: the Hall
conductivity in the strong-field case !c
 � 1 can be
approximated by the Berry-curvature term,64) whereas that
in the weak-field case !c
 	 1 is described by the Fermi-
surface term.65) Here !c represents the energy gap between
Landau levels, and τ is inversely proportional to the damping.
Namely, the Berry-curvature term is dominant if the band
splitting which contributes to the Hall conductivity is much
larger than the broadening in the single-particle spectrum;
otherwise, the Fermi-surface term is dominant. Importantly,
these terms are automatically included in the conductivities
derived from the Kubo formula without any additional
approximation. Moreover, the limit � ! 0 is unrealistic in
periodically driven systems because the finite Γ is required to
realize a nonequilibrium steady state with the heating due to
the pump field. Therefore, we will study the time-averaged
spin and charge off-diagonal dc conductivities without
simplification using the Berry curvature.

5. Numerical Results

In this section, we show the time-averaged spin and charge
off-diagonal dc conductivities calculated numerically for
Sr2RuO4 driven by CPL, LPL, or BCPL at � ¼ 2 or 3. In
Sect. 5.1, we focus on the time-averaged spin off-diagonal dc
conductivities. In all the cases considered, the Onsager
reciprocal relations argued in Sect. 2.2.2 are satisfied and the
main terms are given by the antisymmetric parts. In Sect. 5.2,
we turn to the time-averaged charge off-diagonal dc
conductivities. Although the Onsager reciprocal relations
argued in Sect. 2.1.2 are satisfied, their main terms depend on
the polarization of light. In the case with CPL or LPL, the
main term is the antisymmetric or symmetric part, respec-
tively. Then, in the cases with BCPL at ð�; �Þ ¼ ð2; �

4
Þ,

ð2; 3�
4
Þ, ð3; �

4
Þ, ð3; �

2
Þ, and ð3; 3�

4
Þ, the main term is the

antisymmetric part in the range of 0 � u � 0:4, whereas it is
the symmetric part in the range of 0:5 � u � 1. Here u ¼ eA0

is the dimensionless quantity. Meanwhile, in the cases with
BCPL at ð�; �Þ ¼ ð2; 0Þ, ð2; �

2
Þ, ð2; �Þ, ð3; 0Þ, and ð3; �Þ, �C

yx

is almost vanishing in the range of 0:5 � u � 1, although
its main term is the antisymmetric part in the range of
0 � u � 0:4. These results are consistent with our general
arguments made in Sect. 2.

We numerically evaluated Eqs. (57), (58), and (77)–(80)
using the following four procedures. First, we calculated the

momentum summation by dividing the first Brillouin zone
into a Nx � Ny mesh. Second, we performed the frequency
integration using

R �=2
��=2 d!

0 Fð!0Þ 
PW�1
s¼0 �!0Fð!0

sÞ, where
!0

s ¼ ��=2 þ s�!0, and !0
W ¼ �=2. Third, we calculated

the frequency derivatives of the Green’s functions by using
@Fð!0Þ
@!0 
 Fð!0þ�!0Þ�Fð!0��!0Þ

2�!0 . Fourth, we replaced the summa-
tions over the Floquet indices,

P1
m;l;n;q¼�1, by

Pnmax
m;l;n;q¼�nmax

.
In the actual calculations, we set Nx ¼ Ny ¼ 100, �!0 ¼

0:005 eV, � ¼ 0:01 eV, Tb ¼ 0:02 eV, and � ¼ 6 eV. This Ω
is larger than the bandwidth of the nondriven system
[Fig. 5(b)], which means that the light is off-resonant. We
also set nmax ¼ 1 except the results for nmax ¼ 0. Note that
the calculations with nmax ¼ 0 include the light-induced
corrections due to only the zeroth-order Bessel functions,
whereas the calculations with nmax ¼ 1 include those due to
not only the zeroth- and first-order Bessel functions, but
also the higher-order Bessel functions (see Appendix B). In
Appendix D, we show that the results obtained for nmax ¼ 1

and 2 are qualitatively the same in the case with BCPL at
� ¼ 2, � ¼ �

4
, and � ¼ 6 eV. The similar property holds in

the case with CPL.11) Therefore, setting nmax ¼ 1 may be
reasonable in periodically driven Sr2RuO4 at � ¼ 6 eV.

The reasons for presenting the numerical results are three
fold. First, the consistency between our general arguments
and numerical results supports the correctness of the results
obtained in them. Second, the numerical results for a specific
model may help to better understand the Onsager reciprocal
relations in the periodically driven systems. Third, the
numerical results can determine whether the time-averaged
spin and charge off-diagonal dc conductivities are dominated
by the symmetric or antisymmetric parts even in the cases
with BCPL. In the cases with BCPL, the dominant terms
cannot be determined from the general arguments due to the
lack of a simple relation between the pump field and its time-
reversal counterpart, as we have explained in Sects. 2.1.2 and
2.2.2.

5.1 Time-averaged spin off-diagonal dc conductivities
We compare the numerically calculated �S

yx, �~�S
xy, and ~�S

xy

for Sr2RuO4 driven by CPL, LPL, or BCPL. The Onsager
reciprocal relations are satisfied in all the cases considered.
Furthermore, the main term of �S

yx is given by the
antisymmetric part. Therefore, �S

yx can be regarded as the
spin Hall conductivity in all the cases considered.

5.1.1 Case with CPL or LPL
Figure 6(a) shows the u dependences of �S

yx, �~�S
xy, and ~�S

xy

for Sr2RuO4 driven by LCPL. These conductivities satisfy
�S
yx ¼ � �~�S

xy and �S
yx ¼ � ~�S

xy, which correspond to Eqs. (19)
and (23), respectively. The former means that �S

yx satisfies the
Onsager reciprocal relation, whereas the latter means that it is
antisymmetric. Namely, these results demonstrate the validity
of Eqs. (19) and (23).

Then, Fig. 6(b) shows the u dependences of �S
yx and ~�S

xy for
Sr2RuO4 driven by LPL. Note that in the case of LPL,
�~�S
xy ¼ ~�S

xy holds. As well as the case with CPL, the Onsager
reciprocal relation is satisfied with LPL, and �S

yx is given by
the antisymmetric part. Therefore, Eq. (24) is also validated.

5.1.2 Cases with BCPL
Figure 7(a) shows the u dependences of �S

yx for Sr2RuO4
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driven by BCPL at � ¼ 2 and � ¼ 0, �
4
, �
2
, 3�

4
, and π. �S

yx is
almost independent of θ in the range of 0 � u � 0:4, whereas
it depends on θ in the range of 0:5 � u � 1. This θ
dependence may arise from the light-induced corrections
due to the higher-order Bessel functions for moderately large
u, as we will discuss in Sect. 6.1. The nearly monotonically
decreasing u dependences may be due to the dynamical
localization, the reduction in the kinetic energy due to the
zeroth-order Bessel function in the Peierls phase factor. Note
that the dynamical localization can be described by the time-
averaged Hamiltonian, in which the zeroth-order Bessel
function leads to the correction to the hopping integrals. In
fact, the almost monotonically decreasing u dependence
can be reproduced by the �S

yx calculated numerically with
nmax ¼ 0, in which only the zeroth-order Bessel function
gives the light-induced corrections [Fig. 8(a)].

In addition, Figs. 7(b)–7(f ) show the u dependences of �S
yx,

�~�S
xy, and ~�S

xy for Sr2RuO4 driven by BCPL at � ¼ 2 and � ¼ 0,
�
4
, �
2
, 3�

4
, and π. As well as the cases with CPL and LPL, the

Onsager reciprocal relation �S
yx ¼ � �~�S

xy holds. Furthermore,

the main term is the antisymmetric part. This may be
surprising because the Onsager reciprocal relation in this case
does not restrict �S

yx to the antisymmetric part [see Eq. (25)].
The similar results are obtained at � ¼ 3. Figure 9(a)

shows the u dependences of �S
yx in Sr2RuO4 driven by BCPL

at � ¼ 3 and � ¼ 0, �
4
, �
2
, 3�

4
, and π. �S

yx is almost independent
of θ in the range of 0 � u � 0:7, whereas it depends on θ in
the range of 0:8 � u � 1. As we will discuss in Sect. 6.1, we
can understand this θ dependence in a similar way to that
obtained at � ¼ 2. Then, Figs. 9(b)–9(f ) show the relations
among �S

yx, �~�
S
xy, and ~�S

xy as functions of u at � ¼ 3 and � ¼ 0,
�
4
, �
2
, 3�

4
, and π. At these θ’s, the Onsager reciprocal relation

holds and the antisymmetric part gives the main contribution.
Note that the almost monotonically decreasing u dependence
is reproducible by the nmax ¼ 0 terms [Fig. 8(b)].

Before showing the results of the time-averaged charge
off-diagonal dc conductivities, we comment on the role of the
SOC. Figure 10(a) compares the u dependences of �S

yx for
Sr2RuO4 driven by BCPL at � ¼ 2 and � ¼ 0 with and
without the SOC. [Note that in our model, the SOC is the LS
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Fig. 7. (Color online) (a) The u (¼ eA0) dependences of �S
yx for Sr2RuO4 driven by BCPL at � ¼ 2 and � ¼ 6 eV with � ¼ 0, �

4
, �
2
, 3�

4
, and π. The pump field

of BCPL has been defined in Eqs. (12) and (13). For �S
yx, see Fig. 4(d). The u dependences of �S

yx, �~�
S
xy, and ~�S

xy for Sr2RuO4 driven by BCPL at � ¼ 2 and
� ¼ 6 eV with (b) � ¼ 0, (c) � ¼ �

4
, (d) � ¼ �

2
, (e) � ¼ 3�

4
, and (f ) � ¼ �. For �~�S

xy, and ~�S
xy, see Figs. 4(e) and 4(f ), respectively.

(a)

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

LCPL
 = 6 eV

C
on

du
ct

iv
ity

 (e
)

u


−yx

S

~xyS

~xyS antisymmetric

(b)

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

LPL
 = 6 eV

C
on

du
ct

iv
ity

 (e
)

u

yx
S

~xyS

antisymmetric

Fig. 6. (Color online) The u (¼ eA0) dependences of �S
yx, �~�

S
xy, and ~�S

xy for Sr2RuO4 driven by (a) LCPL and (b) LPL at � ¼ 6 eV. The pump fields of LCPL
and LPL have been defined in Eqs. (4) and (11), respectively. For �S

yx, �~�
S
xy, and ~�S

xy, see Figs. 4(d), 4(e), and 4(f), respectively. In the case with LPL, �~�S
xy ¼ ~�S

xy.
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coupling, as shown in Eq. (27).] This result suggests that the
SOC is vital for achieving the finite �S

yx. This is the same as
the property for Sr2RuO4 driven by CPL.11) In addition, the
same conclusion is obtained with BCPL at � ¼ 3 and � ¼ 0,
as shown in Fig. 10(b). Therefore, we conclude that the SOC

plays the vital role in the SHE of the periodically driven
multiorbital metals.

5.2 Time-averaged charge off-diagonal dc conductivities
We now compare �C

yx, ��
C
xy, and �C

xy for Sr2RuO4 driven by
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S
xy, and ~�S
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CPL, LPL, or BCPL. In all the cases considered, the Onsager
reciprocal relations are satisfied. In addition, in the case with
CPL or LPL, �C

yx is given by the antisymmetric or symmetric
part, respectively. Therefore, �C

yx with CPL can be regarded
as the anomalous Hall conductivity. Then, in the cases with
BCPL at ð�; �Þ ¼ ð2; �

4
Þ, ð2; 3�

4
Þ, ð3; �

4
Þ, ð3; �

2
Þ, and ð3; 3�

4
Þ, the

main term is given by the antisymmetric part for small u and
by the symmetric part for moderately large u. Meanwhile, in
the cases with BCPL at ð�; �Þ ¼ ð2; 0Þ, ð2; �

2
Þ, ð2; �Þ, ð3; 0Þ,

and ð3; �Þ, �C
yx for moderately large u is almost vanishing,

although its main term for small u is given by the
antisymmetric part. The unusual crossover between the
antisymmetric and symmetric parts may result from the
mixture of these parts and the accidentally small value of the
antisymmetric part for the moderately strong magnitude of
BCPL.

5.2.1 Case with CPL or LPL
Figure 11(a) shows the u dependences of �C

yx, ��
C
xy, and �C

xy

for Sr2RuO4 driven by LCPL at � ¼ 6 eV. Equations (5) and

(9), i.e., �C
yx ¼ ��C

xy and �C
yx ¼ ��C

xy, hold. These results
indicate that �C

yx satisfies the Onsager reciprocal relation
and is given by the antisymmetric part. This is consistent with
the numerical result obtained in graphene driven by CPL.27)

Then, Fig. 11(b) shows the u dependences of �C
yx and �C

xy

for Sr2RuO4 driven by LPL at � ¼ 6 eV. Note that in this
case ��C

xy ¼ �C
xy. In contrast to the case with CPL, �C

yx is given
by the symmetric part, although it satisfies the Onsager
reciprocal relation [i.e., Eq. (10)]. This result also agrees with
that obtained in graphene driven by LPL.27)

5.2.2 Cases with BCPL
Figure 12(a) shows the u dependences of �C

yx for Sr2RuO4

driven by BCPL at � ¼ 2 with � ¼ 0, �
4
, �
2
, 3�

4
, and π. �C

yx is
almost θ-independent in the range of 0 � u � 0:4, whereas
it is θ-dependent in the range of 0:5 � u � 1. This θ
dependence can be understood in a similar way to the origin
of the θ-dependent �S

yx (see Sect. 6.1). In contrast to �S
yx, the

magnitude and sign of �C
yx can change with increasing u. This

may be because the finite �C
yx arises from the light-induced
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4
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4
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contributions. In fact, �C
yx ¼ 0 if only the nmax ¼ 0 terms are

considered [Fig. 13(a)].
Figures 12(b)–12(f ) compare �C

yx, ��
C
xy, and �C

xy as functions
of u for Sr2RuO4 driven by BCPL at � ¼ 2 with � ¼ 0, �

4
, �
2
,

3�
4
, and π. First, �C

yx ¼ ��C
xy holds at these θ’s. Namely, the

Onsager reciprocal relation Eq. (14) is numerically validated.
Then, at � ¼ 0, �

2
, and π, �C

yx for u � 0:4 is dominated by the
antisymmetric part, whereas �C

yx for moderately larger u is
almost vanishing. Meanwhile, at � ¼ �

4
and 3�

4
, the antisym-

metric part is the main term of �C
yx for u � 0:4, but the

symmetric part becomes the main term for larger u. This
suggests that for Sr2RuO4 driven by BCPL at � ¼ 2 with
some θ’s, the main term of �C

yx can be changed from the
antisymmetric part to the symmetric part or vice versa by
tuning the magnitude of the pump field of BCPL. This
unusual crossover may be surprising, but it does not
contradict the Onsager reciprocal relation because this
relation with BCPL cannot be reduced to the antisymmetric
or symmetric part in general (see Sect. 2.1.2).

The above crossover might be due to the mixture of the
antisymmetric and symmetric parts and the vanishingly small
antisymmetric part for large u. As we can see from
Figs. 12(a) and 12(b), the θ-independent terms of �C

yx are
finite and dominated by the antisymmetric part in the range of
0 � u � 0:4, whereas they become almost vanishing in the
range of 0:5 � u � 1. In addition, as we can see from
Figs. 12(a) and 12(c)–12(f ), the θ-dependent terms become
non-negligible only in the range of 0:5 � u � 1 and are
dominated by the symmetric part. These results imply that the
crossover between the antisymmetric and symmetric parts
with changing u might arise from a combination of the
mixture of these parts and the accidentally small antisym-
metric part in the range of 0:5 � u � 1. As we have
explained in Sect. 2.1.2, the Onsager reciprocal relation with
BCPL does not exclude a possibility of such a mixture. In
fact, such a mixture can be realized in another periodically
driven system with BCPL,30) although the antisymmetric part
is dominant for all the u’s in the range of 0 � u � 1. We
should note that the accidentally small antisymmetric part
may be characteristic of this model, but its origin is difficult
to be clarified.

The symmetric relation between �C
yx’s at a couple of θ’s for

moderately large u could be understood in terms of the
symmetry of ABCPLðtÞ. Figure 12(a) or 14(a) shows that �C

yx’s
at � ¼ �

4
and 3�

4
at a certain u in the range of 0:5 � u � 1 are

of almost the same magnitude and of opposite sign. This may

be characteristic of the symmetric part of �C
yx because �C

yx in
the range of 0:5 � u � 1 is dominated by the symmetric part
[Figs. 12(c) and 12(e)]. The similar property is achieved in
graphene driven by LPL if �C

yx’s with the pump fields of LPL
connected by a mirror operation are compared.27) As we can
see from Fig. 14(d), the trajectories of ABCPLðtÞ’s at � ¼ �

4

and 3�
4
are connected by a mirror operation about the Ax ¼ 0

plane. Therefore, the symmetric relation between �C
yx’s at

� ¼ �
4
and 3�

4
in the range of 0:5 � u � 1 could be linked to

the mirror symmetry of the trajectories of ABCPLðtÞ’s. This
interpretation remains valid even if we compare �C

yx’s at � ¼
�
4
and � �

4
[Fig. 14(b)] or at � ¼ 3�

4
and 5�

4
[Fig. 14(c)] in the

range of 0:5 � u � 1. The trajectories at � ¼ �
4
and � �

4
or at

� ¼ 3�
4

and 5�
4

are connected by another mirror operation
about the Ay ¼ 0 plane [see Figs. 14(e) and 14(f )].

The similar properties hold at � ¼ 3. First, �C
yx is almost

independent of θ in the range of 0 � u � 0:4 and dependent
on it in the range of 0:5 � u � 1 [see Fig. 15(a)]. Second, the
light-induced terms are vital for achieving the finite �C

yx [see
Fig. 13(b)]. Third, the Onsager reciprocal relation �C

yx ¼ ��C
xy

holds at � ¼ 0, �
4
, �
2
, 3�

4
, and π [see Figs. 15(b)–15(f )]. Fourth,

�C
yx in the range of 0 � u � 0:4 is dominated by the

antisymmetric part at these θ’s, whereas �C
yx in the range

of 0:5 � u � 1 is almost vanishing at � ¼ 0 and π and
dominated by the symmetric part at �

4
, �

2
, and 3�

4
[see

Figs. 15(b)–15(f )]. Fifth, �C
yx’s at � ¼ �

2
and 3�

2
, at � ¼ �

4
and

7�
4
, or at � ¼ 3�

4
and 5�

4
in the range of 0:5 � u � 1 are

of almost the same magnitude and of opposite sign [see
Figs. 16(a)–16(c)]; and the trajectories of ABCPLðtÞ’s at each
couple are connected by the mirror operation about the
Ax ¼ 0 or Ay ¼ 0 plane [see Figs. 16(d)–16(f )].

Finally, we remark on the role of the SOC. Figures 17(a)
and 17(b) show the u dependences of �C

yx without SOC for
Sr2RuO4 driven by BCPL at � ¼ 2 and 3, respectively, with
� ¼ 0, �

4
, �

2
, 3�

4
, and π. Comparing Figs. 17(a) and 12(a) or

Figs. 17(b) and 15(a), we find that the effect of the SOC on
�C
yx is not large. In particular, �C

yx can be finite even without
the SOC. This is in contrast to the vital role of the SOC in �S

yx

and similar to the property obtained in Sr2RuO4 driven by
CPL.11) These results suggest that the SOC is not important in
discussing �C

yx of the periodically driven multiorbital metals.

6. Discussion

6.1 Origin of the θ dependences of �S
yx and �C

yx

First, we discuss the origin of the θ dependences of �S
yx and

�C
yx for Sr2RuO4 driven by BCPL at � ¼ 2 and 3. As we have
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Fig. 13. (Color online) The u (¼ eA0) dependences of �C
yx for Sr2RuO4 driven by BCPL at (a) � ¼ 2 and (b) � ¼ 3, � ¼ 0, and � ¼ 6 eV with nmax ¼ 1 and

0. Here nmax is the upper limit of the summation over the Floquet indices (i.e.,
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shown in Figs. 7(a), 9(a), 12(a), and 15(a), �S
yx and �C

yx are
almost independent of θ for small u, whereas they depend on
θ for moderately large u. This property could be understood
by discussing the u and θ dependences of the kinetic energy
terms ½�abðkÞ�mn’s because the effects of ABCPLðtÞ are taken
into account via the Peierls phase factor in the kinetic energy

[see Eqs. (33) and (73)]. Let us consider ½�dyzdyz ðkÞ�mn for
example. As shown in Appendix B, ½�dyzdyzðkÞ�mn is given
by

½�dyzdyz ðkÞ�mn ¼ �t2Imn
x ðkx; u; �; �Þ � t1I

mn
y ðky; u; �; �Þ; ð89Þ

where
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. The trajectories of the pump fields of BCPL per period Tp at � ¼ 2 with (d) � ¼ �
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4
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4
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4
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Fig. 15. (Color online) (a) The u (¼ eA0) dependences of �C
yx for Sr2RuO4 driven by BCPL at � ¼ 3 and � ¼ 6 eV with � ¼ 0, �

4
, �
2
, 3�

4
, and π. A0, β, and θ of

BCPL have been defined in Eqs. (12) and (13). For �C
yx, see Fig. 4(a). The u dependences of �C

yx, ��C
xy, and �C

xy for Sr2RuO4 driven by BCPL at � ¼ 3 and
� ¼ 6 eV with (b) � ¼ 0, (c) � ¼ �

4
, (d) � ¼ �

2
, (e) � ¼ 3�

4
, and (f ) � ¼ �. For ��C

xy and �C
xy, see Figs. 4(b) and 4(c), respectively.
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Imn
x ðkx; u; �; �Þ ¼

X1
l¼�1

in�m�ð��1Þle�il�Jn�m��lðuÞJlðuÞ½e�ikxð�1Þn�m�ð��1Þl þ eikx�; ð90Þ

Imn
y ðky; u; �; �Þ ¼

X1
l¼�1

e�il�ð�1ÞlJn�m��lðuÞJlðuÞ½e�ikyð�1Þn�m�ð��1Þl þ eiky�; ð91Þ

and JlðuÞ is the lth-order Bessel function of the first kind. For simplicity, we restrict the Floquet indices m, n, and l to be
�1 � m; n; l � 1, which corresponds to the case at nmax ¼ 1. After some calculation, we obtain Imn

x ðkx; u; �; �Þ’s at � ¼ 2 and 3,

Imn
x ðkx; u; �; 2Þ � 2
n�m;0 cos kxJ0ðuÞ2 � 2ð
n�m;1 þ 
n�m;�1Þ sin kxJ0ðuÞJ1ðuÞ

� 2ðe�i�
n�m;1 þ ei�
n�m;�1Þ cos kxJ1ðuÞ2
� 2ð
n�m;2 þ 
n�m;�2Þ cos kxJ0ðuÞJ2ðuÞ
� 2ðe�i�
n�m;2 þ ei�
n�m;�2Þ sin kxJ0ðuÞJ1ðuÞ þ Oðu3Þ; ð92Þ

and
Imn
x ðkx; u; �; 3Þ � 2
n�m;0 cos kxJ0ðuÞ2 � 2ð
n�m;1 þ 
n�m;�1Þ sin kxJ0ðuÞJ1ðuÞ

� 2ð
n�m;2 þ 
n�m;�2Þ cos kxJ0ðuÞJ2ðuÞ
� 2ðe�i�
n�m;2 þ ei�
n�m;�2Þ cos kxJ1ðuÞ2 þ Oðu3Þ: ð93Þ
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Fig. 16. (Color online) The u (¼ eA0) dependences of �C
yx for Sr2RuO4 driven by BCPL at � ¼ 3 and � ¼ 6 eV with (a) � ¼ �

2
and 3�

2
, (b) � ¼ �

4
and 7�

4
, and

(c) � ¼ 3�
4
and 5�

4
. The trajectories of the pump fields of BCPL per period Tp at � ¼ 3 with (d) � ¼ �

2
and 3�

2
, (e) � ¼ �

4
and 7�

4
, and (f ) � ¼ 3�

4
and 5�

4
. The two

trajectories in each panel are connected by the mirror operation about the Ax ¼ 0 or Ay ¼ 0 plane.

(a)

−3

−2

−1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

No SOC

 = 2
 = 6 eV

 y
xC

 (e
2 /h

)

u

 = 0
 = /4
 = /2
 = 3/4
 = 

(b)

−3

−2

−1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

No SOC

 = 3
 = 6 eV

 y
xC

 (e
2 /h

)

u

 = 0
 = /4
 = /2
 = 3/4
 = 

Fig. 17. (Color online) The u (¼ eA0) dependences of �C
yx for Sr2RuO4 driven by BCPL at (a) � ¼ 2 and (b) � ¼ 3 and � ¼ 6 eV with � ¼ 0, �

4
, �
2
, 3�

4
, and π

in the absence of SOC.
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These equations show that the θ dependences arise from the light-induced corrections due to the finite-order Bessel functions.
Note that Imn

y ðky; u; �; �Þ’s at � ¼ 2 and 3 have the same property. By using the series expansions of the Bessel functions, we
can express Eqs. (92) and (93) as follows:

Imn
x ðkx; u; �; 2Þ � 
n�m;0ð2 � u2Þ cos kx � ð
n�m;1 þ 
n�m;�1Þu sin kx

� ðe�i�
n�m;1 þ ei�
n�m;�1Þ u
2

2
cos kx

� ð
n�m;2 þ 
n�m;�2Þ u
2

4
cos kx

� ðe�i�
n�m;2 þ ei�
n�m;�2Þu sin kx þ Oðu3Þ; ð94Þ
and

Imn
x ðkx; u; �; 3Þ � 
n�m;0ð2 � u2Þ cos kx � ð
n�m;1 þ 
n�m;�1Þu sin kx

� ð
n�m;2 þ 
n�m;�2Þ u
2

4
cos kx

� ðe�i�
n�m;2 þ ei�
n�m;�2Þ u
2

2
cos kx þ Oðu3Þ: ð95Þ

These equations can explain the θ-independent �S
yx for small

u because the terms for n � m ¼ 0 are primary (if they give
the finite contribution). Although the terms for n �m ≠ 0

are necessary for �C
yx ≠ 0, these equations can also explain

the θ-independent �C
yx for small u, at which the terms for

n �m ¼ �1 are dominant. This is because in the small-u
region, the θ-independent u1 terms are more important than
the θ-dependent u2 terms. For moderately large u, the θ-
dependent u2 terms for n � m ¼ �1 may become non-
negligible. Therefore, the θ dependences of �S

yx and �C
yx could

be interpreted in terms of the u and θ dependences of the
light-induced corrections to the kinetic energy.

6.2 Comparisons with other relevant studies
We now compare our results about the Onsager reciprocal

relations with other relevant studies. As described in Sect. 1,
there are several studies24–27) about the Onsager reciprocal
relations in periodically driven systems. In two of them,24,25)

the time-periodic field was treated as perturbation. Mean-
while, in our theory, the time-periodic pump field has been
treated nonperturbatively. In general, the time-periodic field
should be treated nonperturbatively to describe periodically
driven systems because its nonperturbative effects often
change the electronic states drastically. Therefore, the
systems studied in these papers24,25) are insufficient to discuss
the standard periodically driven systems. Then, in another,26)

the Onsager reciprocal relations about the matter or energy
transport between a periodically driven system and one of
the three reservoirs were studied. This is distinct from the
transport phenomena within periodically driven systems.
Therefore, except our previous paper,27) there has been no
study of the Onsager reciprocal relations for any transport
within periodically driven systems in which the nonperturba-
tive effects of the driving field are taken into account. In that
paper,27) we numerically studied the time-averaged charge
off-diagonal dc conductivities �C

yx and �C
xy in graphene driven

by CPL or LPL and found that �C
yx ¼ ��C

xy or �
C
yx ¼ �C

xy holds
with CPL or LPL, respectively. However, we did not discuss
the generality of these relations, i.e., we just showed that they
are satisfied in our numerical results. Meanwhile, in this
paper, we have made general arguments about the Onsager
reciprocal relations for spin and charge transport within the

periodically driven systems. These arguments are applicable
to many periodically driven systems and extendable to others.
Therefore, this work is the first systematic study of the
Onsager reciprocal relations in periodically driven systems.
Most importantly, this paper is the first work demonstrating
the Onsager reciprocal relations for the spin transport in
periodically driven systems.

Next, we compare our results in the case of BCPL at � ¼ 3

with our previous study30) for graphene driven by BCPL at
� ¼ 3. (Although we have also studied the case at � ¼ 2

there,30) its results are not directly comparable to the results
obtained in this paper due to the vital role of the valley degree
of freedom in that case studied in Ref. 30.) There are three
similarities between our results shown in Sect. 5.2.2 and
those obtained in this previous study:30) �C

yx is almost
independent of θ for small u and depends on it for moderately
large u; �C

yx for small u is dominated by the antisymmetric
part; and the antisymmetric and symmetric parts are mixed
for moderately large u at � ¼ �

2
. Therefore, these properties

may be characteristic properties of �C
yx in systems driven by

BCPL. Then, the difference is that the antisymmetric part of
�C
yx becomes almost vanishing for moderately large u in

Sr2RuO4 driven by BCPL at � ¼ 0 and π, whereas the
antisymmetric part remains dominant even for moderately
large u in graphene driven by BCPL at these θ’s.30)

We turn to the comparisons with some theoretical
studies66–68) about transport properties with BCPL at � ¼ 2.
In these studies, the effects of the BCPL on charge or spin
transport have been analyzed in perturbation theories. First,
our results about the effects of the SOC are similar to those
on the charge and spin conductivities of another three-orbital
electron system having the z component of the SOC in the
second-order perturbation theory against the BCPL field.67)

This similarity may be reasonable because the SOC is treated
nonperturbatively in both cases. Then, our θ-dependent �C

yx is
similar to the θ-dependent charge conductivity obtained in
the third-order perturbation theory against the BCPL field.68)

However, a critical value of u above which �C
yx depends on θ

exists only in our case [see Fig. 12(a)]. This critical value
may arise from the nonlinear u terms of the light-induced
corrections, as we have discussed in Sect. 6.1. Therefore, the
crossover between the θ-independent and θ-dependent �C

yx
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may be characteristic of nonperturbative effects of BCPL.
This interpretation remains valid in graphene driven by
BCPL.30) Although the authors of Ref. 68 have claimed that
a nonperturbative effect is also discussed, their discussions
are insufficient because they have used an approximation
for the Hamiltonian, H0½k þ AðtÞ� 
 H0ðkÞ þ AðtÞ @H0ðkÞ

@k [see
Eq. (29) of Supplemental Material of Ref. 68], which is valid
only if AðtÞ, the vector potential of the BCPL, can be treated
perturbatively. Namely, their theory can analyze only the
perturbative effects of the BCPL. We do not use such an
approximation; instead, we have analyzed the nonperturba-
tive effects of BCPL in the standard Floquet linear-response
theory.8,11,38,49)

6.3 Experimental realization
Finally, we comment on experimental realization of our

results. We have supposed that our periodically driven open
system can reach a nonequilibrium steady state due to the
damping Γ. The AHE predicted in such a periodically driven
open system7) was experimentally observed.10) Therefore, our
time-averaged charge off-diagonal dc conductivities could be
experimentally observed in the pump-probe measurements
for periodically driven Sr2RuO4. In addition, our SHE could
be detected via the inverse SHE22,23) because we have
demonstrated that �S

yx satisfies the Onsager reciprocal
relation, which is similar to that in nondriven systems, and
is dominated by the antisymmetric part. Note that ~�S

xy could
be experimentally observed by measuring the charge current
perpendicular to the probe spin field [see Fig. 4(f )]. As the
probe spin field, we can use, for example, the gradient of the
Zeeman field, which could be experimentally realized.69)

In the case of Sr2RuO4, u ¼ 0:1 for � ¼ 6 eV corresponds
to E0 
 15:4MV=cm, where we have used u ¼ eaNNA0 ¼
eaNNE0=� and aNN 
 0:39 nm.70) From an experimental
point of view, the pump field of the order of 10MV=cm can
be realized.71) Therefore, it may be possible to observe the
θ-dependent �C

yx and �S
yx for moderately large u as well as the

θ-independent �C
yx and �S

yx for small u. Although there is a
possibility that the similar θ-dependent �C

yx and �S
yx will be

realized even for smaller Ω and E0, it is difficult to check this
possibility due to the huge cost of the numerical calculations.
Note that in the case of CPL,11) the u dependence of the �S

yx or
�C
yx obtained for � ¼ 6 eV is similar to that obtained for

smaller Ω.

7. Conclusions

In summary, we have theoretically established the Onsager
reciprocal relations for the charge and spin transport in the
periodically driven systems. We have made general argu-
ments about these relations for �C

yx and �S
yx in the periodically

driven systems with CPL, LPL, and BCPL. We have shown
that �C

yx and �S
yx satisfy the Onsager reciprocal relations in all

the cases considered and that their main terms depend on the
polarization of light. In the case with CPL or LPL, �C

yx is
dominated by the antisymmetric or symmetric part, respec-
tively, whereas �S

yx is dominated by the antisymmetric part.
Meanwhile, in the case with BCPL, �C

yx and �S
yx are not

restricted to either the antisymmetric or symmetric part
generally. Then, we have numerically analyzed �C

yx, �
S
yx, and

the other time-averaged off-diagonal dc conductivities
appearing in the Onsager reciprocal relations by applying

the Floquet linear-response theory to the model of periodi-
cally driven Sr2RuO4. We have demonstrated the validity of
our arguments. In addition, we have shown in the cases with
BCPL that the main term of �S

yx is given by the antisymmetric
part, whereas that of �C

yx depends on the magnitude of the
pump field. More precisely, �C

yx for small u is dominated by
the antisymmetric part, whereas �C

yx for moderately large u is
almost vanishing or dominated by the symmetric part.

Our arguments and numerical calculations have demon-
strated that �S

yx in the periodically driven systems satisfies the
Onsager reciprocal relation. This means that the finite �S

yx in
the periodically driven systems can be indirectly observed by
measuring the time-averaged dc conductivity of the inverse
SHE. Therefore, our results open the way for detecting the
spin current in periodically driven systems via the inverse
SHE. Since such an indirect detection method has been
widely used in many spintronics phenomena of nondriven
systems,72) this achievement is useful to develop and observe
many spintronics phenomena in periodically driven systems.
Therefore, our results provide a vital step towards compre-
hensive understanding and further development of spin-
tronics in periodically driven systems.

Our arguments have shown an essential difference between
the Onsager reciprocal relations for �C

yx and �S
yx. The

difference is that �C
yx possesses the antisymmetric part only

without time-reversal symmetry, whereas �S
yx possesses the

antisymmetric part even with it. This is consistent with the
fact that the AHE is possible with broken time-reversal
symmetry, whereas the SHE is possible even with time-
reversal symmetry. This difference is due to the difference
between the time-reversal symmetries of the charge and spin
currents.

Moreover, our arguments have resolved the contradictory
statements about the Onsager reciprocal relation for the spin
transport in nondriven systems.34–37) There is a previous
study claiming the violation of the Onsager reciprocal
relation for the spin transport,36) whereas there are other
studies claiming its existence.34,35,37) Furthermore, among the
latter studies, the expression of the Onsager reciprocal
relation is different: in one of them35) the spin off-diagonal
dc conductivity is dominated by the symmetric part, whereas
in the others34,37) it is dominated by the antisymmetric part.
As we have shown in Sect. 2.2.1, our results are consistent
with the results of the last two studies,34,37) i.e., the spin off-
diagonal dc conductivity satisfies the Onsager reciprocal
relation even with time-reversal symmetry and is dominated
by the antisymmetric part. Therefore, our arguments support
the validity of the interpretation of the inverse SHE22,23) as
the existence of the spin current in nondriven systems.

Then, our numerical calculations in the cases with BCPL
have indicated that �C

yx cannot necessarily be regarded as the
anomalous Hall conductivity even if time-reversal symmetry
is broken. In general, we can regard �C

yx as the anomalous
Hall conductivity if and only if �C

yx is dominated by the
antisymmetric part. In addition, time-reversal symmetry can
be broken by BCPL.30) As shown in Sect. 5.2.2, �C

yx with
BCPL for moderately large u is almost vanishing or
dominated by the symmetric part, although that for small
u is dominated by the antisymmetric part. This unusual
property does not contradict the Onsager reciprocal relation
because this relation in the case with BCPL restricts �C

yx to
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neither the antisymmetric nor symmetric part generally (see
Sect. 2.1.2). It may be due to the lack of a simple relation
between the pump field of BCPL and its time-reversal
counterpart. In contrast, the pump field of CPL has the simple
relation ALCPLð�tÞ ¼ ARCPLðtÞ; as a result, �C

yx with CPL is
restricted to the antisymmetric part (see Sect. 2.1.2). These
results suggest that even if time-reversal symmetry can be
broken by the pump field, it is highly required to check
whether or not the main term of �C

yx is given by the
antisymmetric part in discussing the AHE. It is also necessary
to check the main term of �S

yx to discuss the SHE because in
some cases such as the cases with BCPL its main term is not
restricted by the Onsager reciprocal relation to either the
antisymmetric or symmetric part. These suggestions are
useful for future studies of the AHE and SHE.

This paper will stimulate many future studies of transport
phenomena in periodically driven systems. First, our results
allow the experimental detection of the spin current in
periodically driven systems via the inverse SHE. The impact
of our paper is not restricted to the SHE, but it will encourage
future studies of other spintronics phenomena such as the
spin Seebeck effect72–75) in periodically driven systems. This

is because the inverse SHE is often used to convert the spin
current into an electrical signal. Then, our results will provide
a useful guideline when studying the Onsager reciprocal
relations for the time-averaged charge and spin off-diagonal
dc conductivities in the systems driven by CPL, LPL, or
BCPL. Moreover, our general arguments and theory can be
extended to the other transport coefficients including the ac
conductivities in periodically driven systems. The extension
to the transport coefficients in the non-linear regime is also an
important future study.
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Appendix A: Derivation of Eq. (55)

We derive Eq. (55). Since we have explained this
derivation in Ref. 11, we here describe its main points.
Substituting Eq. (42) or (43) into Eq. (52), we obtain

�Q
yxð!Þ ¼ Re½�Qð1Þ

yx ð!Þ þ �Qð2Þ
yx ð!Þ�; ðA:1Þ

where

�Qð1Þ
yx ð!Þ ¼

Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�Qð1Þ
yx tav þ trel

2
; tav � trel

2

� �
; ðA:2Þ

�Qð2Þ
yx ð!Þ ¼

Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�Qð2Þ
yx tav þ trel

2
; tav � trel

2

� �
: ðA:3Þ

We calculate the right-hand sides of Eqs. (A·2) and (A·3) using Eqs. (44) and (50), the Floquet representation of the Green’s
functions, and two relations. One of the two relations is that the Floquet representation of a function Aðt; t 0Þ ¼R
dt 00 Bðt; t 00ÞCðt 00; t 0Þ is given by

½Að!Þ�mn ¼
X1
l¼�1

½Bð!Þ�ml½Cð!Þ�ln: ðA:4Þ

The other is that a product aðtÞDðt; t 0Þ is expressed in the Floquet representation as

½aDð!Þ�mn ¼
X1
l¼�1

½a�ml½Dð!Þ�ln: ðA:5Þ

By substituting Eqs. (44) and (50) into Eqs. (A·2) and (A·3), respectively, and using the Floquet representation and these
relations, we obtain

�Qð1Þ
yx ð!Þ ¼

Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�Qð1Þ
yx tav þ trel

2
; tav � trel

2

� �

¼ � 1

!N

X
k

X
a;b

X
�

Z �=2

��=2

d!0

2�

X1
m;l¼�1

½M ðQÞyx
ab� ðkÞ�ml½G<

b�a�ðk; !0Þ�lm

¼ � 1

!N

X
k

X
a;b

X
�

Z �=2

��=2

d!0

2�
tr½M ðQÞyx

ab� ðkÞG<
b�a�ðk; !0Þ�; ðA:6Þ

�Qð2Þ
yx ð!Þ ¼

Z Tp

0

dtav
Tp

Z 1

�1
dtrel e

i!trel�Qð2Þ
yx tav þ trel

2
; tav � trel

2

� �

¼ 1

!N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�

X1
m;n;l;q¼�1

� f½vðQÞyab� ðkÞ�ml½GR
b�c�0 ðk; !0 þ !Þ�ln½vðCÞxcd�0 ðkÞ�nq½G<

d�0a�ðk; !0Þ�qm
þ ½vðQÞyab� ðkÞ�ml½G<

b�c�0 ðk; !0Þ�ln½vðCÞxcd�0 ðkÞ�nq½GA
d�0a�ðk; !0 � !Þ�qmg

¼ 1

!N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�
ftr½vðQÞyab� ðkÞGR

b�c�0 ðk; !0 þ !ÞvðCÞxcd�0 ðkÞG<
d�0a�ðk; !0Þ�

þ tr½vðQÞyab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞGA

d�0a�ðk; !0 � !Þ�g; ðA:7Þ

J. Phys. Soc. Jpn. 94, 094706 (2025) Full Papers N. Arakawa and K. Yonemitsu

094706-20 ©2025 The Physical Society of Japan©2025 The Author(s)

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 中央大学 on 08/18/25



where

½M ðQÞyx
ab� ðkÞ�ml ¼

Z Tp

0

dt

Tp
eiðm�lÞ�t 
v

ðQÞy
ab� ðk; tÞ


Ax
probðtÞ

: ðA:8Þ

Since �Qð1Þ
yx ð!Þ has only a pure imaginary part,49) we have

�Q
yxð!Þ ¼

1

!N

X
k

X
a;b;c;d

X
�;�0

Z �=2

��=2

d!0

2�
Reftr½vðQÞyab� ðkÞGR

b�c�0 ðk; !0 þ !ÞvðCÞxcd�0 ðkÞG<
d�0a�ðk; !0Þ�

þ tr½vðQÞyab� ðkÞG<
b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞGA

d�0a�ðk; !0 � !Þ�g: ðA:9Þ
Moreover, we can rewrite this expression by using the identity,

Re½trðABÞ� ¼ 1

2
ftrðABÞ þ tr½ðABÞy�g; ðA:10Þ

and the symmetry relations of quantities in the Floquet representation,
½G<

d�0a�ðk; !0Þy�ml ¼ �½G<
a�d�0 ðk; !0Þ�ml; ðA:11Þ

½vðCÞxcd�0 ðkÞy�ln ¼ ½vðCÞxdc�0 ðkÞ�ln; ðA:12Þ
½GR

b�c�0 ðk; !0 þ !Þy�nq ¼ ½GA
c�0b�ðk; !0 þ !Þ�nq; ðA:13Þ

½vðQÞyab� ðkÞy�qm ¼ ½vðQÞyba� ðkÞ�qm: ðA:14Þ
Note that Eqs. (A·11) and (A·13) are obtained by using

G<
d�0a� k; tav þ trel

2
; tav � trel

2

� �y
¼ �G<

a�d�0 k; tav � trel
2

; tav þ trel
2

� �
; ðA:15Þ

and

GR
b�c�0 k; tav þ trel

2
; tav � trel

2

� �y
¼ GA

c�0b� k; tav � trel
2

; tav þ trel
2

� �
; ðA:16Þ

respectively. Using Eqs. (A·10)–(A·14), we obtain
1

!
Reftr½vðQÞyab� ðkÞGR

b�c�0 ðk; !0 þ !ÞvðCÞxcd�0 ðkÞG<
d�0a�ðk; !0Þ�g

¼ 1

2!
ftr½vðQÞyab� ðkÞGR

b�c�0 ðk; !0 þ !ÞvðCÞxcd�0 ðkÞG<
d�0a�ðk; !0Þ�

� tr½G<
a�d�0 ðk; !0ÞvðCÞxdc�0 ðkÞGA

c�0b�ðk; !0 þ !ÞvðQÞyba� ðkÞ�g; ðA:17Þ
and

1

!
Reftr½vðQÞyab� ðkÞG<

b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞGA
d�0a�ðk; !0 � !Þ�g

¼ 1

2!
ftr½vðQÞyab� ðkÞG<

b�c�0 ðk; !0ÞvðCÞxcd�0 ðkÞGA
d�0a�ðk; !0 � !Þ�

� tr½GR
a�d�0 ðk; !0 � !ÞvðCÞxdc�0 ðkÞG<

c�0b�ðk; !0ÞvðQÞyba� ðkÞ�g: ðA:18Þ
Substituting Eqs. (A·17) and (A·18) into Eq. (A·9), we obtain Eq. (55).

Appendix B: ½�abðkÞ�mn of Sr2RuO4 Driven by BCPL

We can calculate ½�abðkÞ�mn of Sr2RuO4 driven by BCPL by using Eqs. (12) and (13) and Eq. (73). To do this, we use
identities,

eiu sinð�tþ�Þ ¼
X1
l¼�1

JlðuÞeilð�tþ�Þ; ðB:1Þ

eiu cosð�tþ�Þ ¼
X1
l¼�1

ilJlðuÞeilð�tþ�Þ; ðB:2Þ

JlðuÞ ¼ ð�1ÞlJlð�uÞ ¼ ð�1ÞlJ�lðuÞ; ðB:3Þ
where JlðuÞ is the Bessel function of the first kind, and l is its order. After some calculation, we obtain

½�dyzdyz ðkÞ�mn ¼ ð�t2Þ
X1
l¼�1

in�m�ð��1Þle�il�Jn�m��lðuÞJlðuÞ½e�ikxð�1Þn�m�ð��1Þl þ eikx�
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þ ð�t1Þ
X1
l¼�1

e�il�ð�1ÞlJn�m��lðuÞJlðuÞ½e�ikyð�1Þn�m�ð��1Þl þ eiky�; ðB:4Þ

½�dzxdzxðkÞ�mn ¼ ð�t1Þ
X1
l¼�1

in�m�ð��1Þle�il�Jn�m��lðuÞJlðuÞ½e�ikxð�1Þn�m�ð��1Þl þ eikx�

þ ð�t2Þ
X1
l¼�1

e�il�ð�1ÞlJn�m��lðuÞJlðuÞ½e�ikyð�1Þn�m�ð��1Þl þ eiky�; ðB:5Þ

½�dyzdzxðkÞ�mn ¼ ½�dzxdyzðkÞ�mn ¼ t5
X1

l;l0;l00¼�1
ilþl

0
e�iðl

0þl00Þ�JlðuÞJl0 ðuÞJn�m�l�ðl0þl00Þ�ðuÞJl00 ðuÞ

� ½e�ikxe�ikyð�1Þn�m�ðl0þl00Þ�þl0 þ eikxeikyð�1Þl00

� e�ikxeikyð�1Þlþl0þl00 � eikxe�ikyð�1Þn�m�l�ðl0þl00Þ��; ðB:6Þ

½�dxydxyðkÞ�mn ¼ ð�t3Þ
X1
l¼�1

e�il�Jn�m��lðuÞJlðuÞ½in�m�ð��1Þle�ikxð�1Þn�m�ð��1Þl þ in�m�ð��1Þleikx

þ e�ikyð�1Þn�m��l þ eikyð�1Þl�

þ ð�t4Þ
X1

l;l0;l00¼�1
ilþl

0
e�iðl

0þl00Þ�JlðuÞJl0 ðuÞJn�m�l�ðl0þl00Þ�ðuÞJl00 ðuÞ

� ½e�ikxe�ikyð�1Þn�m�ðl0þl00Þ�þl0 þ eikxeikyð�1Þl00 þ e�ikxeikyð�1Þlþl0þl00

þ eikxe�ikyð�1Þn�m�l�ðl0þl00Þ��; ðB:7Þ
where

u ¼ eaNNA0 ¼ eA0: ðB:8Þ
As described in Sect. 3, t1, t2, and t3 are the nearest-neighbor hopping integrals on the square lattice, and t4 and t5 are the next-
nearest-neighbor ones11) [Fig. 5(a)].

We make three comments about Eqs. (B·4)–(B·7). First, the relative phase difference in BCPL, θ, causes the phase factors,
such as e�il� and e�iðl

0þl00Þ�, only for the terms of the finite-order Bessel functions. Second, the number of the Bessel functions is
twice that in the case of CPL.11) This is because the x or y component of the pump field contains two trigonometric functions in
the case of BCPL, whereas it contains one in the case of CPL.11) Third, even if the Floquet indices m, n, l, l0, and l00 are
restricted to the range of �nmax � m; n; l; l0; l00 � nmax, ½�abðkÞ�mn’s include not only the Bessel functions the order of which is
within this range, but also the Bessel functions the order of which is outside of it. For example, if � ¼ 2 and �1 � m; n; l � 1

(i.e., nmax ¼ 1), the order of the first Bessel function in Eq. (B·4), Jn�m��lðuÞ, takes the value outside of that range. Since the
third property is also related to the number of the trigonometric functions appearing in the Peierls phase factors, this suggests
that the high-order Bessel functions play a more important role in the case of BCPL than in that of CPL. In fact, this is
consistent with the difference between the nmax dependences of �S

yx obtained for BCPL and CPL.

Appendix C: ½ ��abðkÞ�mn of Sr2RuO4 Driven by BCPL

We can calculate ½ ��abðkÞ�mn of Sr2RuO4 driven by BCPL in a similar way to the calculation explained in Appendix B. After
such calculation using Eqs. (15), (16), and (85), we obtain

½ ��dyzdyz ðkÞ�mn ¼ ð�t2Þ
X1
l¼�1

in�m�ð��1Þleil�Jn�m��lðuÞJlðuÞ½e�ikxð�1Þn�m�ð��1Þl þ eikx�

þ ð�t1Þ
X1
l¼�1

eil�ð�1Þn�m��lJn�m��lðuÞJlðuÞ½e�ikyð�1Þn�m�ð��1Þl þ eiky�; ðC:1Þ

½ ��dzxdzx ðkÞ�mn ¼ ð�t1Þ
X1
l¼�1

in�m�ð��1Þleil�Jn�m��lðuÞJlðuÞ½e�ikxð�1Þn�m�ð��1Þl þ eikx�

þ ð�t2Þ
X1
l¼�1

eil�ð�1Þn�m��lJn�m��lðuÞJlðuÞ½e�ikyð�1Þn�m�ð��1Þl þ eiky�; ðC:2Þ

½ ��dyzdzx ðkÞ�mn ¼ ½ ��dzxdyz ðkÞ�mn ¼ t5
X1

l;l0;l00¼�1
ilþl

0
eiðl

0þl00Þ�JlðuÞJl0 ðuÞJn�m�l�ðl0þl00Þ�ðuÞJl00 ðuÞ

� ½e�ikxe�ikyð�1Þlþl0þl00 þ eikxeikyð�1Þn�m�l�ðl0þl00Þ� � e�ikxeikyð�1Þn�m�ðl0þl00Þ�þl0

� eikxe�ikyð�1Þl00 �; ðC:3Þ
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½ ��dxydxy ðkÞ�mn ¼ ð�t3Þ
X1
l¼�1

eil�Jn�m��lðuÞJlðuÞ½in�m�ð��1Þle�ikxð�1Þn�m�ð��1Þl þ in�m�ð��1Þleikx

þ e�ikyð�1Þl þ eikyð�1Þn�m��l�

þ ð�t4Þ
X1

l;l0;l00¼�1
ilþl

0
eiðl

0þl00Þ�JlðuÞJl0 ðuÞJn�m�l�ðl0þl00Þ�ðuÞJl00 ðuÞ

� ½e�ikxe�ikyð�1Þlþl0þl00 þ eikxeikyð�1Þn�m�l�ðl0þl00Þ� þ e�ikxeikyð�1Þn�m�ðl0þl00Þ�þl0

þ eikxe�ikyð�1Þl00 �: ðC:4Þ

These equations and Eqs. (B·4)–(B·7) show that the dif-
ferences between ½ ��abðkÞ�mn’s and ½�abðkÞ�mn’s are the
differences in the phase factors due to θ and the sign factors
such as ð�1Þl and ð�1Þn�m��l. These differences are
reasonable because ABCPLð�tÞ and ABCPLðtÞ are given by
Eqs. (15) and (16) and by Eqs. (12) and (13), respectively.

Appendix D: Additional Numerical Results

We show additional numerical results to discuss the
validity of our choice of the value of nmax. Figures D·1(a) and
D·1(b) show the nmax dependences of �S

yx and �
C
yx for Sr2RuO4

driven by BCPL at � ¼ 2, � ¼ �
4
, and � ¼ 6 eV. In obtaining

these results, we chose some parameters to be different from
the values used in the numerical results shown in Sect. 5: we
set Nx ¼ Ny ¼ 64 and �!0 ¼ 0:01 eV to reduce the cost of
the numerical calculations. These figures show that the results
obtained for nmax ¼ 1 and 2 are qualitatively the same.
Therefore, nmax ¼ 1 may be reasonable to study qualitative
properties of �S

yx and �C
yx for Sr2RuO4 driven by BCPL at

� ¼ 6 eV.
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