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In a Hubbard model for the Kitaev spin-liquid candidate material α-RuCl3 with three t2g orbitals per Ru site, we
calculate photoinduced dynamics based on the exact diagonalization method and interpret them with the help of a high-
frequency expansion in quantum Floquet theory. The high-frequency expansion shows two types of effective magnetic
fields during the application of a circularly polarized light field. One of them originates from spin–orbit coupling and is
within the honeycomb lattice. The other is of purely kinetic origin and perpendicular to the lattice. The former fields are
antiparallel at the two sites within a unit cell and rotate in accordance with the momentum distribution of holes that
follow the light field. When the light field is weak, pseudospin dynamics are governed by the former fields; thus, the
average of the pseudospins almost vanishes. The latter fields are parallel at the two sites within a unit cell and produce
nonzero perpendicular components of the pseudospins when the light field is strong. Numerically obtained perpendicular
components are consistent with the latter fields when the frequency of the light field is well below the Mott gap. The
relevance to the inverse Faraday effect recently observed in α-RuCl3 is discussed.

1. Introduction

Photoinduced cooperative phenomena, including photo-
induced phase transitions, have attracted considerable
attention.1–11) For those accompanied by a symmetry change,
its mechanisms have been a central issue. If the transition
is between metastable and stable phases, photoexcitations
produce seeds of fluctuations that grow under some
conditions.12–14) However, recent experimental techniques
have realized the photoinduced coherent motion of many
electrons.15,16) On a timescale shorter than the electron–
electron scattering time, inversion symmetry can be broken
to cause second harmonic generation in centrosymmetric
systems.17–20)

As to changes in the time-reversal symmetry, there are
photoinduced phase transitions between the ferromagnetic
metal and the antiferromagnetic insulator in perovskite
manganites,9,13,14) which are often treated in the double
exchange model. These transitions are believed to be
achieved by domain growth from the seeds of fluctuations.
For intended symmetry breaking of the time-reversal
symmetry, Floquet topological insulators with peculiar Hall
responses,21–24) spin chirality or current generation,25) chiral
spin liquids,26,27) topological superconductivity,28,29) and spin
polarization30) are theoretically proposed to be induced by
circularly polarized light fields, as well as magnetization by
rotating magnetic fields.31,32) Recently, the inverse Faraday
effect has been observed during the application of a circularly
polarized light field to α-RuCl3 in the quantum-spin-liquid
phase.33) It suggests photoinduced polarization of magnetic
moments that is perpendicular to the honeycomb lattice. In a
different context, the inverse Faraday effect on tight-binding
models with the Rashba-type spin–orbit coupling or the
pseudospin inversion asymmetry spin–orbit coupling is
theoretically studied using the time-dependent Schrödinger
equation as well as Floquet theory.34,35) Aside from current-
induced spin polarization,36) photoinduced magnetization is
theoretically discussed from the viewpoint of the nonlinear
Edelstein effect.37)

In quantum-spin-liquid phases, magnetic moments are
completely suppressed by frustrations. Photoexcitations may
bring about nonzero magnetic moments in effect by reducing

frustrations. Above all, α-RuCl3 has attracted much attention
as a candidate material that possesses Majorana fer-
mions.38,39) It is a Mott insulator, and its pseudospin degrees
of freedom in the quantum-spin-liquid phase are now
believed to be basically described by the Kitaev model40,41)

and Majorana fermions42,43) on the two-dimensional honey-
comb lattice. Nonequilibrium properties of Kitaev quantum
spin liquids are also theoretically investigated.44–48)

In this work, we theoretically study photoinduced
dynamics of pseudospins and their relevance to experimental
observations in α-RuCl3.33) Since near- and=or mid-infrared
pulses are used, the charge degrees of freedom are also
important. Thus, we consider a Hubbard model consisting of
dyz, dxz, and dxy orbitals on each site of the honeycomb
lattice.49–52) We use the model parameters employed in
Ref. 51, but the hopping term is limited to the nearest
neighbors because of the smallness of the system treated by
the exact diagonalization method.

Intersite Coulomb interactions considered and evaluated in
Ref. 52 are found to cause strong excitonic effects, which are
inconsistent with reported optical conductivity spectra53–56)

and electron energy loss spectroscopy measurements.57)

Therefore, we do not take them into account. From the
observed spectra,53–57) α-RuCl3 is a Mott insulator with a gap
of about 1 eV. Below the Mott gap, in-gap states are
observed, the assignment of which is still controversial. In
this study, they are qualitatively reproduced by the exact
diagonalization method and regarded basically as spin–orbit
excitons.56,58,59)

We consider only the quantum-spin-liquid phase. To take
account of such strong electron correlations in the ground
state, we use the exact diagonalization method. Because the
z-component of the total spin is not conserved owing to spin–
orbit coupling, we simultaneously treat six spin orbitals per
site. Numerically, we consider a minimum-size system that
has three unit cells, each of which consists of two sites A and
B, and use the periodic boundary conditions shown in Fig. 1
to maintain the threefold symmetry. Note that the employed
model parameters (transfer integrals and crystal fields)51) do
not have the threefold symmetry. By using this system, we do
not consider the antiferromagnetic state of collinear zigzag
type,51) which is the experimentally observed ground state
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and is not threefold-symmetric. As a consequence of the
smallness of the system, the excitation spectra are quite
discrete, and the low-energy pseudospin degrees of freedom,
which are often described by Majorana fermions, may not be
quantitatively treated. On the other hand, we can directly treat
both Jeff ¼ 1

2
and 3

2
pseudospins and the corresponding charge

degrees of freedom to cover a large energy scale ranging
from on-site Coulomb interactions to excitations below the
Mott gap.

The pseudospin and other dynamics are calculated on
the basis of numerical solutions to the time-dependent
Schrödinger equation. They are interpreted with the help of
a high-frequency expansion in quantum Floquet theory,
which gives effective Hamiltonian terms during a contin-
uous-wave excitation before thermalization.60–67) The effec-
tive term originating from spin–orbit coupling shows that
photoexcitations produce effective in-plane magnetic fields
acting on pseudospins. The emergence and initial dynamics
of pseudospins induced by a circularly polarized light field
are numerically consistent with these effective magnetic
fields. The commutators among the kinetic operators on the
three bonds produce effective out-of-plane magnetic fields
that polarize pseudospins in the direction perpendicular to
the honeycomb lattice, i.e., they give rise to the inverse
Faraday effect. We will discuss the assignment of in-gap
states below the Mott gap and how pseudospins are
polarized during the application of a circularly polarized
light field.

2. Three-Orbital Model on Honeycomb Lattice

We employ the hole picture and treat the case of one hole
per site consisting of three t2g orbitals. Following Ref. 51, we
use a three-orbital Hubbard model,

H ¼ Hhop þHCF þ HSO þ HU; ð1Þ
which consists of the kinetic term, the crystal-field term,
spin–orbit coupling, and Coulomb interactions, respectively.
In what follows, we use

~cyi ¼ ðcyi;yz;" cyi;yz;# cyi;xz;" cyi;xz;# cyi;xy;" cyi;xy;#Þ; ð2Þ
where cyi;a;� creates a hole in orbital a 2 fyz; xz; xyg with spin
σ at site i. The kinetic term is described by

Hhop ¼ �
X
ij

~cyi fTij � I2�2g~cj; ð3Þ

where I2�2 is the 2 � 2 identity matrix and Tij is the hopping
matrix defined for each bond connecting nearest-neighbor
sites i and j. The latter is one of TX

1 , T
Y
1 , and TZ

1 for the X1,
Y1, and Z1 bonds, respectively, shown in Fig. 1. They are
given by

TX
1 ¼

t 03 t 04a t 04b
t 04a t 01a t 02
t 04b t 02 t 01b

0
B@

1
CA; TY

1 ¼
t 01a t 04a t 02
t 04a t 03 t 04b
t 02 t 04b t 01b

0
B@

1
CA; ð4Þ

and

TZ
1 ¼

t1 t2 t4

t2 t1 t4

t4 t4 t3

0
B@

1
CA ð5Þ

with t1 ¼ 0:0509 eV, t 01a ¼ 0:0449 eV, t 01b ¼ 0:0458 eV, t2 ¼
0:1582 eV, t 02 ¼ 0:1622 eV, t3 ¼ �0:1540 eV, t 03 ¼ �0:1031
eV, t4 ¼ �0:0202 eV, t 04a ¼ �0:0151 eV, and t 04b ¼ �0:0109
eV. The crystal-field term is described by

HCF ¼ �
X
i

~cyi fEi � I2�2g~ci; ð6Þ

where Ei is the crystal-field tensor given by

Ei ¼
0 �1 �2

�1 0 �2

�2 �2 �3

0
B@

1
CA ð7Þ

with �1 ¼ �0:0198 eV, �2 ¼ �0:0175 eV, and �3 ¼
�0:0125 eV. The spin–orbit coupling is given by

HSO ¼ �

2

X
i

~cyi

0 �i�z i�y

i�z 0 �i�x
�i�y i�x 0

0
B@

1
CA~ci; ð8Þ

where �x, �y, and �z are the Pauli matrices and � ¼ 0:15 eV.
The Coulomb interactions are given by

HU ¼ U
X
i;a

ni;a;"ni;a;# þ ðU0 � JHÞ
X

i;a<b;�

ni;a;�ni;b;�

þ U0 X
i;a≠b

ni;a;"ni;b;# � JH
X
i;a≠b

cyi;a;"ci;a;#c
y
i;b;#ci;b;"

þ JH
X
i;a≠b

cyi;a;"c
y
i;a;#ci;b;#ci;b;"; ð9Þ

where ni;a;� ¼ cyi;a;�ci;a;�, U is the intraorbital Coulomb
repulsion, JH is Hund’s coupling strength, and U0 ¼ U � 2JH
is the interorbital repulsion with U ¼ 3:0 eV and JH ¼
0:6 eV.

To describe Jeff ¼ 1
2
states, we introduce

pyi;" ¼
1ffiffiffi
3

p ð�cyi;xy;" � icyi;xz;# � cyi;yz;#Þ; ð10Þ

pyi;# ¼
1ffiffiffi
3

p ðcyi;xy;# þ icyi;xz;" � cyi;yz;"Þ; ð11Þ
which give j 1

2
; 1
2
ii ¼ pyi;"j0i and j 1

2
;� 1

2
ii ¼ pyi;#j0i at site i

(their eigenvalue of HSO is ��). To describe Jeff ¼ 3
2
states,

we introduce

qyi;3=2 ¼
1ffiffiffi
2

p ð�icyi;xz;" � cyi;yz;"Þ; ð12Þ

a
b

X1 Y1

Z1
0 A 0

0

1 B 1

1

2

3

4

5

0

1

X2 Y2

Z2

Fig. 1. (Color online) Honeycomb lattice with periodic boundary
conditions as indicated by numbers. Vectors X1, Y1, and Z1 connect
nearest-neighbor sites, and X2, Y2, and Z2 connect next-nearest-neighbor
sites, as shown here.
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qyi;1=2 ¼
1ffiffiffi
6

p ð2cyi;xy;" � icyi;xz;# � cyi;yz;#Þ; ð13Þ

qyi;�1=2 ¼
1ffiffiffi
6

p ð2cyi;xy;# � icyi;xz;" þ cyi;yz;"Þ; ð14Þ

qyi;�3=2 ¼
1ffiffiffi
2

p ð�icyi;xz;# þ cyi;yz;#Þ; ð15Þ

giving j 3
2
; 3
2
ii ¼ qyi;3=2j0i, j 3

2
; 1
2
ii ¼ qyi;1=2j0i, j 3

2
;� 1

2
ii ¼

qyi;�1=2j0i, and j 32 ;� 3
2
ii ¼ qyi;�3=2j0i at site i (their eigenvalue

of HSO is �=2). For Jeff ¼ 1
2
, the pseudospin densities are thus

described by

j ð1=2Þi;x ¼ 1

2
hpyi;"pi;# þ pyi;#pi;"i; ð16Þ

j ð1=2Þi;y ¼ 1

2
h�ipyi;"pi;# þ ipyi;#pi;"i; ð17Þ

j ð1=2Þi;z ¼ 1

2
hpyi;"pi;" � pyi;#pi;#i; ð18Þ

which give

j ð1=2Þi;? ¼ 1ffiffiffi
3

p ð j ð1=2Þi;x þ j ð1=2Þi;y þ j ð1=2Þi;z Þ; ð19Þ

as the component perpendicular to the honeycomb lattice.
The corresponding charge density is written as

�ð1=2Þi ¼ hpyi;"pi;" þ pyi;#pi;#i: ð20Þ
For Jeff ¼ 3

2
, they are described with

~qy
i ¼ ðqyi;3=2 qyi;1=2 qyi;�1:2 qyi;�3=2Þ ð21Þ

by

j ð3=2Þi;x ¼ h~qy
i

0
ffiffiffi
3

p
=2 0 0ffiffiffi

3
p

=2 0 1 0

0 1 0
ffiffiffi
3

p
=2

0 0
ffiffiffi
3

p
=2 0

0
BBBB@

1
CCCCA~qii; ð22Þ

j ð3=2Þi;y ¼ h~qy
i

0 �i ffiffiffi
3

p
=2 0 0

i
ffiffiffi
3

p
=2 0 �i 0

0 i 0 �i ffiffiffi
3

p
=2

0 0 i
ffiffiffi
3

p
=2 0

0
BBBB@

1
CCCCA~qii;

ð23Þ

j ð3=2Þi;z ¼ h~qy
i

3=2 0 0 0

0 1=2 0 0

0 0 �1=2 0

0 0 0 �3=2

0
BBBB@

1
CCCCA~qii; ð24Þ

which give

j ð3=2Þi;? ¼ 1ffiffiffi
3

p ð j ð3=2Þi;x þ j ð3=2Þi;y þ j ð3=2Þi;z Þ; ð25Þ

as the component perpendicular to the honeycomb lattice.
Note that the magnetic moment (in units of Bohr magneton
�B) M ¼ �l þ 2s41,68) with an effective angular momentum l
and a hole spin operator s is given by M ¼ �2j ð1=2Þ (i.e., the
g factor is −2 when the covalency factor is omitted)38,39,68,69)

at each site.
The initial state is the ground state obtained by the exact

diagonalizationmethod applied to the six-site system shown in
Fig. 1. Photoexcitation is introduced through the Peierls phase

cyi;a;�cj;b;� ! exp � ie

ħc
rij � AðtÞ

� �
cyi;a;�cj;b;�; ð26Þ

which is substituted into Eq. (3) for each combination of sites
i and j with relative position rij ¼ rj � ri. When parameter
values are referred to, we use e ¼ a ¼ ħ ¼ 1 with a being
the intersite distance. The optical conductivity spectra are
calculated for the ground state as before.70) For photoinduced
dynamics, we employ symmetric n-cycle electric-field pulses
with n being an integer of duration toff ¼ 2n�=! with
frequency ω. Thus, the time-dependent vector potential for a
circularly polarized light field is written as

AaðtÞ ¼ �ð0 < t < toffÞ
cð�FL � FRÞ

!

� ½sinð!t � �iniÞ � sinð��iniÞ�; ð27Þ

AbðtÞ ¼ �ð0 < t < toffÞ
cðFL � FRÞ

!

� ½cosð!t � �iniÞ � cosð��iniÞ�; ð28Þ
with �ð0 < t < toffÞ ¼ 1 for 0 < t < toff and �ð0 < t <
toffÞ ¼ 0 otherwise for the a and b (not to be confused with
orbital) components within the plane (Fig. 1). It corresponds
to the electric field given by

EaðtÞ ¼ �ð0 < t < toffÞðFL þ FRÞ cosð!t � �iniÞ; ð29Þ
EbðtÞ ¼ �ð0 < t < toffÞðFL � FRÞ sinð!t � �iniÞ: ð30Þ

Throughout this paper, we set FR ¼ 0 when FL ≠ 0 and
FL ¼ 0 when FR ≠ 0. Considering that the distance between
neighboring Ru+3 ions is 3.45Å,71) FL ¼ 0:02 (FL ¼ 0:2)
used later corresponds to 0.58MV=cm (5.8MV=cm). The
time-dependent Schrödinger equation is numerically solved
by expanding the exponential evolution operator with a time
slice dt ¼ 0:02 to the 15th order and by checking the
conservation of the norm.72)

3. Consequence of Reflection Symmetry

The two-dimensional system considered here has reflection
symmetry with respect to a line (k b-axis) containing a Z1

bond and a line (k a-axis) containing the perpendicular
bisector of a Z1 bond. Photoinduced dynamics conform to the
corresponding symmetry operations (within the two-dimen-
sional system), as explained below.

3.1 Reflection symmetry with respect to Z1
For AðtÞ ¼ 0, this reflection symmetry makes the model

[Eq. (1)] invariant under the operation consisting of the
exchange of the X1 and Y1 bonds, that of the dxz and
dyz orbitals, ci;a;# ! �ici;a;# (cyi;a;# ! icyi;a;#), and then the
exchange of the � ¼ " and ↓ operators. This symmetry
operation exchanges a light field of left-hand circular
polarization with FL and �ini ¼ �0 and a light field of
right-hand circular polarization with FR of the same
magnitude and �ini ¼ �0 þ �. It also exchanges j ðJeffÞi;x for
�j ðJeffÞi;y and j ðJeffÞi;z for �j ðJeffÞi;z . As a consequence, if a light field
with FL and �ini ¼ �0 produces j ðJeffÞi;? at time t, it guarantees
that a light field with FR of the same magnitude and
�ini ¼ �0 þ � produces �j ðJeffÞi;? (i.e., of the same magnitude
and opposite sign) at the same time t, which is numerically
confirmed.
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3.2 Reflection symmetry with respect to ⊥ bisector of Z1
For AðtÞ ¼ 0, this reflection symmetry makes the model

[Eq. (1)] invariant under the operation consisting of the
exchange of sites A and B connected through the Z1 bond,
that of the X1 and Y1 bonds, that of the dxz orbital at site A
(B) and the dyz orbital at site B (A), ci;a;# ! �ici;a;# (cyi;a;# !
icyi;a;#), and then the exchange of the � ¼ " and ↓ operators.
This symmetry operation exchanges a light field of left-hand
circular polarization with FL and �ini ¼ �0 and a light field
of right-hand circular polarization with FR of the same
magnitude and �ini ¼ �0. It also exchanges j ðJeffÞsiteA;x for �j ðJeffÞsiteB;y,
j ðJeffÞsiteA;y for �j ðJeffÞsiteB;x, and j ðJeffÞsiteA;z for �j ðJeffÞsiteB;z. As a consequence,
if a light field with FL and �ini ¼ �0 produces j

ðJeffÞ
siteA;? þ j ðJeffÞsiteB;?

at time t, it guarantees that a light field with FR of the same
magnitude and �ini ¼ �0 produces �j ðJeffÞsiteA;? � j ðJeffÞsiteB;? (i.e., of
the same magnitude and opposite sign) at the same time t,
which is also numerically confirmed.

4. High-Frequency Expansion in Floquet Theory

For interpreting photoinduced dynamics of pseudospins, a
high-frequency expansion in quantum Floquet theory60–67)

turns out to be useful even if the frequencies used in the
numerical calculations are not so high. Continuous waves are
considered only in this section. For a circularly polarized
light field, we use

AaðtÞ ¼ cFLðRÞ
!

sin!t; ð31Þ

AbðtÞ ¼ � cFLðRÞ
!

cos!t; ð32Þ

JmðijÞ � Jm
eaijFLðRÞ

ħ!

� �
e�im�ij ; ð33Þ

where JmðijÞ67) is used to define Hm below, JmðxÞ on the
right-hand side is the mth-order Bessel function, aij ¼
jri � rjj, and �ij is the angle between ri � rj and a reference
axis. Later, we often use Hm defined by

Hm ¼ �
X
ij

~cyi fTijJmðijÞ � I2�2g~cj: ð34Þ

In the lowest order of the expansion (denoted by H ð1Þ
F in

Ref. 67), the kinetic term of the Hamiltonian Hhop [Eq. (3)]
is renormalized to be Hm¼0, while the other terms of the
Hamiltonian are unaltered.

In the second-lowest order, we have

Hð2Þ
F ¼

X
m≠0

HmH�m
mħ!

¼
X
m>0

½Hm;H�m�
mħ!

; ð35Þ

which is written as

Hð2Þ
F ¼

X
m>0;ijkabc�

tikact
kj
cb

mħ!
½JmðikÞJ�mðkjÞ

� J�mðikÞJmðkjÞ�cyi;a;�cj;b;�; ð36Þ
where tijab denotes the transfer integral between orbital a at
site i and orbital b at site j. For a circularly polarized light
field, Eq. (36) is rewritten as

Hð2Þ
F ¼

X
m>0;ijkabc�

tikact
kj
cb

mħ!
J2m

eaFLðRÞ
ħ!

� �
ð�2iÞ

� sin½mð�ik � �jkÞ�cyi;a;�cj;b;�; ð37Þ

where light fields of left-hand circular polarization and of
right-hand circular polarization give the opposite signs. Note
that, for a linearly polarized light field, Eq. (36) becomes
zero. For left-hand circular polarization, we proceed further.
Since only next-nearest-neighbor sites i and j contribute to
the summation in Eq. (37), it is written as

H ð2Þ
F ¼ Hð2,AÞ

F þ Hð2,BÞ
F ; ð38Þ

where sites i and j belong to sublattice A in Hð2,AÞ
F and to

sublattice B in H ð2,BÞ
F . With the Fourier transforms, Hð2,AÞ

F is
expressed as

Hð2,AÞ
F ¼

X
m>0

1

mħ!

X
kab�

J2m
eaFL

ħ!

� �
ð2iÞ sin 2m�

3

� ðeik�X2TY
1T

Z
1 � e�ik�X2TZ

1T
Y
1

þ eik�Y2TZ
1T

X
1 � e�ik�Y2TX

1T
Z
1

þ eik�Z2TX
1T

Y
1 � e�ik�Z2TY

1T
X
1 ÞabcyA;k;a;�cA;k;b;�

¼
X
m>0

1

mħ!

X
kab�

J2m
eaFL

ħ!

� �
ð2iÞ sin 2m�

3

� ð½TY
1 ;T

Z
1 � cos k � X2 þ ifTY

1 ;T
Z
1g sin k � X2

þ ½TZ
1 ;T

X
1 � cos k � Y2 þ ifTZ

1 ;T
X
1 g sin k � Y2

þ ½TX
1 ;T

Y
1 � cos k � Z2

þ ifTX
1 ;T

Y
1 g sin k � Z2ÞabcyA;k;a;�cA;k;b;�; ð39Þ

where the creation and annihilation operators act on
sublattice A. The operator Hð2,BÞ

F is given by reversing the
momenta, i.e., k ! �k, in the parentheses ð� � �Þab of Eq. (39)
and cyA;k;a;�cA;k;b;� ! cyB;k;a;�cB;k;b;�; the creation and annihi-
lation operators now act on sublattice B. For right-hand
circular polarization, the factor ð2iÞ in Eq. (39) is replaced by
the factor (�2i). In Eq. (39), the cosine terms are shown to be
important below. This is in contrast to the one-orbital model
on the honeycomb lattice (i.e., graphene) where the cosine
terms are missing and the sine terms are responsible for the
emergence of a Floquet topological insulator.21)

To make the implication of Hð2Þ
F clear, we estimate it

roughly. The term with m ¼ 1 is dominant when the light
field is not so strong and the argument of the Bessel functions
is small. Thus, the essential role of Hð2Þ

F can be understood by
approximating the k-dependent terms in the parentheses by
k ¼ 0 and keeping the m ¼ 1 terms only:

Hð2Þ
F ’ 1

ħ!

X
iab�

J21
eaFL

ħ!

� �
ð2iÞ sin 2�

3

� ð½TY
1 ;T

Z
1 � þ ½TZ

1 ;T
X
1 � þ ½TX

1 ;T
Y
1 �Þabcyi;a;�ci;b;�: ð40Þ

Assuming the threefold symmetry, t1 ¼ t 01a ¼ t 01b, t2 ¼ t 02,
t3 ¼ t 03, and t4 ¼ t 04a ¼ t 04b, we have

½TY
1 ;T

Z
1 � ¼ �i½t2ðt3 � t1Þ � t4ðt2 � t4Þ�ðly þ lzÞ

� i½t22 � t24 � 2t4ðt3 � t1Þ�lx; ð41Þ
½TZ

1 ;T
X
1 � ¼ �i½t2ðt3 � t1Þ � t4ðt2 � t4Þ�ðlz þ lxÞ

� i½t22 � t24 � 2t4ðt3 � t1Þ�ly; ð42Þ
½TX

1 ;T
Y
1 � ¼ �i½t2ðt3 � t1Þ � t4ðt2 � t4Þ�ðlx þ lyÞ

� i½t22 � t24 � 2t4ðt3 � t1Þ�lz; ð43Þ
with
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lx ¼
0 0 0

0 0 �i
0 i 0

0
B@

1
CA; ly ¼

0 0 i

0 0 0

�i 0 0

0
B@

1
CA;

lz ¼
0 �i 0

i 0 0

0 0 0

0
B@

1
CA; ð44Þ

thus, the commutators in Eq. (40) are evaluated as

½TY
1 ;T

Z
1 � þ ½TZ

1 ;T
X
1 � þ ½TX

1 ;T
Y
1 �

¼ �iðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ�

�
0 �i i

i 0 �i
�i i 0

0
B@

1
CA: ð45Þ

Finally, we have

H ð2Þ
F ’ 1

ħ!
J21

eaFL

ħ!

� � ffiffiffi
3

p
ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ�

�
X
i�

ðcyi;yz;� cyi;xz;� cyi;xy;�Þ
0 �i i

i 0 �i
�i i 0

0
B@

1
CA

ci;yz;�

ci;xz;�

ci;xy;�

0
B@

1
CA;

ð46Þ
which implies the application of an effective magnetic field to
the effective angular momenta. Because of the inequality
ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ� < 0 owing to the opposite signs

of the dominant transfer integrals t2 and t3, the effective
magnetic field originating from H ð2Þ

F points to the direction
of ð1; 1; 1Þ [for left-hand circular polarization and to the
direction of ð�1;�1;�1Þ for right-hand circular polariza-
tion]. The factor appearing on the left of the summation
symbol in Eq. (46) becomes �2:6 � 10�4 (�2:4 � 10�2) for
FL ¼ 0:02 (FL ¼ 0:2) and ! ¼ 0:3 used later. These values
in units of eV roughly correspond to 4.6 T (410T). The
emergence of an effective magnetic field without relying on
spin–orbit coupling is theoretically proposed in a different
context29) in a similar manner to the present one. Note that
a circularly-polarized-light-induced effective magnetic field
in the direction perpendicular to the honeycomb lattice is
derived in a different manner by considering ligand p orbitals
and ligand-mediated third-order hopping processes in a
strong-coupling perturbation theory for the Jeff ¼ 1

2
pseudo-

spins.73,74) On the other hand, the present field is derived by
second-order hopping processes. Within the Jeff ¼ 1

2
sub-

space, Eq. (46) is expressed as

H
ð2;Jeff¼1

2
Þ

F ’ 1

ħ!
J21

eaFL

ħ!

� � ffiffiffi
3

p
ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ�

� 4

3

X
i

pyi;" pyi;#
� � 1

2

1 � i

2

1 þ i

2
�1

2

0
BB@

1
CCA pi;"

pi;#

 !
:

ð47Þ
Within the Jeff ¼ 3

2
subspace, Eq. (46) leads to

H
ð2;Jeff¼3

2
Þ

F ’ 1

ħ!
J21

eaFL

ħ!

� � ffiffiffi
3

p
ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ�

� 2

3

X
i

qyi;3=2 qyi;1=2 qyi;�1=2 qyi;�3=2
� �

�

3

2

ffiffiffi
3

p

2
ð1 � iÞ 0 0ffiffiffi

3
p

2
ð1 þ iÞ 1

2
1 � i 0

0 1 þ i �1

2

ffiffiffi
3

p

2
ð1 � iÞ

0 0

ffiffiffi
3

p

2
ð1 þ iÞ �3

2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

qi;3=2

qi;1=2

qi;�1=2

qi;�3=2

0
BBBB@

1
CCCCA: ð48Þ

The factor 4
3
in Eq. (47) and the factor 2

3
in Eq. (48) correspond to the Landé g-factors for Jeff ¼ 1

2
and 3

2
, respectively, with

gL ¼ 1 and gS ¼ 0 because the effective magnetic field is applied to the effective angular momenta of L ¼ 1. In the
noninteracting case where we can calculate the photoinduced dynamics of pseudospin densities exactly, we confirm that the
ð1; 1; 1Þ component of the moment is positive (negative) for left-hand (right-hand) circular polarization if spin–orbit coupling
is dominant and ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ� < 0 is satisfied irrespective of ! < 3

2
� or ! > 3

2
� as long as the light field is not

so strong. On the other hand, the sign is inverted if ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ� > 0 is satisfied.
Because spin–orbit coupling [Eq. (8)] operates within a site, its effect appears from the order of !�2 (denoted by H ð3Þ

F in
Ref. 67), which is given by

Hð3Þ
F,SO ¼

X
m≠0

½H�m; ½HSO; Hm��
2ðmħ!Þ2 : ð49Þ

Its meaning becomes clear when it is represented with pi;�, p
y
i;� (Jeff ¼ 1

2
operators) and qi;Jz , q

y
i;Jz

(Jeff ¼ 3
2
operators). Here, we

focus on the terms acting within the Jeff ¼ 1
2
subspace, Hð3;Jeff¼1

2
Þ

F,SO . The terms that act on pseudospins within the Jeff ¼ 3
2

subspace are shown in the Appendix. The operator H ð3;Jeff¼1
2
Þ

F,SO turns out to be the sum of pyi;� pj;	 terms with i ¼ j or next-nearest-

neighbor sites i and j, where sites i and j belong to sublattice A, Hð3;Jeff¼1
2
;AÞ

F,SO , and similar terms with sites i and j belonging to

sublattice B, H ð3;Jeff¼1
2
;BÞ

F,SO . In momentum space, the operator Hð3;Jeff¼1
2
;AÞ

F,SO is written as
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H
ð3;Jeff¼1

2
;AÞ

F,SO ¼ �
X
k

ðpyA;k;"pyA;k;#Þ

�
CðkÞ þ 1

2
Bz
effðkÞ

1

2
ðBx

effðkÞ � iBy
effðkÞÞ

1

2
ðBx

effðkÞ þ iBy
effðkÞÞ CðkÞ � 1

2
Bz
effðkÞ

0
BB@

1
CCA pA;k;"

pA;k;#

 !
; ð50Þ

where the creation and annihilation operators act on sublattice A, and CðkÞ is an even function of k. The components of the
effective magnetic field appearing above Bx

effðkÞ, By
effðkÞ, and Bz

effðkÞ are inclusive of the Landé g-factor for Jeff ¼ 1
2
and odd

functions of k, which are given by

Bx;y;z
eff ðkÞ ¼

X
m≠0

��
2ðmħ!Þ2 � ½Xm;effðkÞ; Ym;effðkÞ; Zm;effðkÞ�; ð51Þ

with

Xm;effðkÞ ¼ ð�ieik�Y2 þ ie�ik�Y2ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ
� ð�t1t 02 � t2t

0
4b þ t3t

0
2 þ t4t

0
1a � t4t

0
1b þ t4t

0
4aÞ

þ ð�ieik�Z2 þ ie�ik�Z2ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ
� ð�t 01bt 02 � t 02t

0
4a þ t 02t

0
3 þ t 01bt

0
4b � t 01at

0
4b þ t 04at

0
4bÞ

þ ð�ieik�X2 þ ie�ik�X2 ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
� ðt1t 04b þ t4t

0
1b � t3t

0
4b � t4t

0
3 þ t2t

0
2 � t4t

0
4aÞ; ð52Þ

Ym;effðkÞ ¼ ð�ieik�Z2 þ ie�ik�Z2ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ
� ð�t 01bt 02 � t 02t

0
4a þ t 02t

0
3 þ t 01bt

0
4b � t 01at

0
4b þ t 04at

0
4bÞ

þ ð�ieik�X2 þ ie�ik�X2 ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
� ð�t1t 02 � t2t

0
4b þ t3t

0
2 þ t4t

0
1a � t4t

0
1b þ t4t

0
4aÞ

þ ð�ieik�Y2 þ ie�ik�Y2ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ
� ðt1t 04b þ t4t

0
1b � t3t

0
4b � t4t

0
3 þ t2t

0
2 � t4t

0
4aÞ; ð53Þ

Zm;effðkÞ ¼ ½ð�ieik�X2 þ ie�ik�X2ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
þ ð�ieik�Y2 þ ie�ik�Y2ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ�
� ð�t2t 01a � t4t

0
2 þ t2t

0
3 þ t4t

0
4bÞ

þ ð�ieik�Z2 þ ie�ik�Z2ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ
� ð2t 01at 04a � 2t 03t

0
4a þ t 02t

0
2 � t 04bt

0
4bÞ: ð54Þ

Here, the arguments of J	m [defined in Eq. (33)] imply that
ri � rj is one of 	X1, 	Y1, and 	Z1 indicated in Fig. 1. The
vectors X2, Y2, and Z2 in the exponents are shown in Fig. 1.
The operator H ð3;Jeff¼1

2
;BÞ

F,SO is given by reversing the momenta,
i.e., k ! �k, in the 2 � 2 matrix of Eq. (50) and pA;k;� !
pB;k;�, p

y
A;k;� ! pyB;k;� for � ¼ "; #; the creation and annihi-

lation operators now act on sublattice B.
The effective magnetic fields given by Eq. (51) have the

properties originating from the symmetry mentioned in
Sect. 3.1: the simultaneous exchanges of vectors X1 for Y1,
X2 for �Y2, and Z2 for �Z2 lead to the exchanges of Bx

effðkÞ
for �By

effðkÞ and Bz
effðkÞ for �Bz

effðkÞ. In the threefold-
symmetric case of t1 ¼ t 01a ¼ t 01b, t2 ¼ t 02, t3 ¼ t 03, and t4 ¼
t 04a ¼ t 04b, the counterclockwise rotation through 120 degrees
(Xi ! Yi ! Zi ! Xi with i ¼ 1 and 2) leads to Bx

effðkÞ !
By
effðkÞ ! Bz

effðkÞ ! Bx
effðkÞ. If t1 ¼ t3 and t2 ¼ t4 are addi-

tionally satisfied, the effective magnetic fields vanish.
According to Refs. 49 and 51, the nearest-neighbor Kitaev
coupling also vanishes in this case.

The present system is almost, but not quite, threefold-
symmetric. When the values of the transfer integrals (that

satisfy t1 ’ t 01a ’ t 01b, t2 ’ t 02, t3 ’ t 03, and t4 ’ t 04a ’ t 04b) are
substituted into the equations above, the factor (2t 01at

0
4a �

2t 03t
0
4a þ t 02t

0
2 � t 04bt

0
4b) in Eq. (54) and similar factors in

Eqs. (52) and (53) are positive, while the factor (�t2t 01a �
t4t

0
2 þ t2t

0
3 þ t4t

0
4b) in Eq. (54) and similar factors in Eqs. (52)

and (53) are negative. The relative signs of these factors turn
out to be important. If the hole density in momentum space
becomes disproportionate along the k � X2-axis, the effect of
Bx
effðkÞ becomes large. If it becomes disproportionate along

the k � Y2-axis, the effect of By
effðkÞ becomes large. If it

becomes disproportionate along the k � Z2-axis, the effect of
Bz
effðkÞ becomes large. If the direction of the current density is

rotated counterclockwise as time advances during the photo-
excitation of left-hand circular polarization, the effective
magnetic field at site A originating from Hð3Þ

F,SO is rotated
roughly as x ! y ! z directions nearly normal to the ð1; 1; 1Þ
direction. During the same time period, the effective
magnetic field at site B originating from H ð3Þ

F,SO is rotated
roughly as �x ! �y ! �z directions. These fields at sites A
and B are almost antiparallel as long as the distribution of
the hole density at site A and that at site B are similar in
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momentum space. This character of the effective magnetic
fields is numerically confirmed when the light field is weak,
as shown later. Note that H ð3Þ

F,SO is responsible for the
stroboscopic time evolution, and the relationship between
BeffðkÞ and the momentum distribution of holes should
be understood to be a time-averaged one. Because the
momentum distribution of holes varies according to the
polarization of the light field, the effect of BeffðkÞ should also
vary on the same timescale.

5. Optical Conductivity

It is now recognized that α-RuCl3 is a Mott insulator with a
fundamental optical gap (the so-called Mott gap) of 1.1 eV.
Thus, the observed peak at 1.2 eV is interpreted as an intersite
dd transition involving t2g orbitals of neighboring Ru ions.
The peak at 2.0 eV is also interpreted as an intersite dd
transition in Refs. 53 and 54, while it is interpreted as an
excitation into an eg orbital in Ref. 57. At energies higher
than about 3 eV, there are contributions from Ru eg orbitals
or Cl p orbitals, which are not taken into account in the
present calculation. In the calculated optical conductivity
spectra shown in Fig. 2(a), where energies are expressed in
units of eV, qualitative characteristics of the experimentally
observed spectra are reproduced. A main peak is located at
around 1.2 eV. The Mott gap appears to be about 1 eV.

Below the Mott gap, three infrared peaks are observed at
about 0.3, 0.5, and 0.7 eV.53,56) In the latest report,56) they are
interpreted as phonon-assisted excitations of single and
double spin–orbit excitons and the direct excitation of a

triple spin–orbit exciton. Multiple spin–orbit excitons are
examined in detail by combining Raman spectroscopy with
exact diagonalization calculations for a six-site system in
Ref. 59. Some infrared peaks below the Mott gap are found
in the calculated spectra shown in Fig. 2(b). If we use small
parameter values for Hhop and set HCF ¼ 0 even in our
calculation for the model without phonons, we find peaks
at 3

2
�, which corresponds to a transition between Jeff ¼ 1

2
and

3
2

states, 2 � 3
2
�, and 3 � 3

2
�, although their oscillation

strengths are quite small. They would correspond to single,
double, and triple spin–orbit excitons. Because the present
system has two sites in a unit cell, both optically allowed and
optically forbidden transitions could be constructed without
the help of phonons, although the oscillator strengths of some
transitions would be enhanced by phonons. In fact, in the
experiment, the spectral weights of the three infrared peaks
are not small even at the lowest temperature;56) thus, they
would survive even if phonons were absent. In reality,
however, the parameter values for Hhop are comparable to λ.
The number of holes in the Jeff ¼ 3

2
subspace is not a good

quantum number. This fact makes the situation for the peak
energies, the oscillator strengths, and the number of peaks
itself quite different from those in the large-λ case. This
would be the reason why the assignment of the infrared peaks
has been controversial. It is difficult, by our calculation based
on the small cluster that omits hopping to the second-nearest
and third-nearest neighbors, to quantitatively reproduce the
infrared peaks. It is numerically true that the spectral shape
below the Mott gap is sensitive to the value of λ. The present
value � ¼ 0:15 eV taken from Ref. 51 is close to the value
� ¼ 0:16 eV evaluated in Ref. 56.

6. Photoinduced Pseudospin Dynamics

We discuss the dynamics of pseudospin densities during
the application of a circularly polarized light field. The
frequency of the light field is set below the Mott gap.
Although the expansion developed in Sect. 4 is justified
when the frequency is high, we expect that the properties
originating from the symmetry aspects are qualitatively
unaltered even when the frequency is set to be low and the
electronic transition processes contributing to the effective
magnetic fields are weighted differently from the high-
frequency case. Then, in interpreting the photoinduced
dynamics, we will refer to the high-frequency expansion
and see how they are similar to or different from the behavior
expected by this expansion. Although the system treated here
is purely two-dimensional, the model parameters used here
are derived for the three-dimensional system.51) Since the
model parameters are not expected to be qualitatively
changed even for monolayer to few-layer systems,59) the
present results would be qualitatively valid even for such
systems. Hereafter, energies are given in units of eV.

As described in Sect. 4, when the direction of the current
density is rotated counterclockwise during the application of
a light field with left-hand circular polarization, the effective
magnetic field originating from H ð3Þ

F,SO at site A and that at
site B are antiparallel and they are rotated counterclockwise
within the a–b plane. The pseudospins would behave in a
similar manner. When the light field is weak, this behavior is
indeed realized, as shown in Fig. 3 for ! ¼ 0:3, which
roughly corresponds to a single spin–orbit exciton. Later the

(a)

(b)

Fig. 2. (Color online) Optical conductivity spectra with polarization
parallel to a- and b-axes in the ground state. In (b), the spectra below the
Mott gap in (a) are enlarged.
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ω dependence of the dynamics is discussed, but this behavior
is always realized and independent of ω as long as the light
field is weak. The time profiles of the x, y, and z components
of the Jeff ¼ 1

2
pseudospin densities at site A ( j ð1=2ÞsiteA;x, j

ð1=2Þ
siteA;y,

and j ð1=2ÞsiteA;z) and at site B ( j ð1=2ÞsiteB;x, j
ð1=2Þ
siteB;y, and j

ð1=2Þ
siteB;z) are shown

for �ini ¼ �
2
in Figs. 3(a) and 3(b), respectively. Those of

the Jeff ¼ 3
2
pseudospin densities at site A ( j ð3=2ÞsiteA;x, j

ð3=2Þ
siteA;y, and

j ð3=2ÞsiteA;z) and at site B ( j ð3=2ÞsiteB;x, j
ð3=2Þ
siteB;y, and j ð3=2ÞsiteB;z) are shown

under the same conditions in Figs. 3(c) and 3(d), respec-
tively. The x, y, and z components show local maxima in this
order as time advances, and their short-time averages (over
the period of 2�=!) are very small, especially for Jeff ¼ 3

2
.

This indicates that the Jeff ¼ 3
2
pseudospins at sites A and B

are perpendicular to the ð1; 1; 1Þ axis and rotate counter-
clockwise. This is what we expect from Hð3Þ

F,SO in quantum
Floquet theory. The behavior of the Jeff ¼ 1

2
pseudospins is

roughly similar to that of the Jeff ¼ 3
2
pseudospins, but there

is some difference presumably because the Jeff ¼ 1
2
pseudo-

spins are directly influenced by the abrupt application of the
light field at t ¼ 0. More precisely, the short-time averages of
these components deviate from zero, and the motion of each
pseudospin is not pure rotation around the ð1; 1; 1Þ axis. For
�ini ¼ �

2
(E k b at t ¼ 0) in fact, the short-time average of the

Jeff ¼ 1
2
pseudospin at site A deviates roughly to the ð1; 1; 0Þ

direction, and that at site B deviates roughly to the
ð�1;�1; 0Þ direction. For �ini ¼ 0 (E k a at t ¼ 0) on the
other hand, the short-time average of the Jeff ¼ 1

2
pseudospin

at site A deviates roughly to the ð�1; 1; 0Þ direction, and that
at site B deviates roughly to the ð1;�1; 0Þ direction (not
shown). In any case, the pseudospins at sites A and B are
almost antiparallel for both Jeff ¼ 1

2
and 3

2
. As a consequence,

the pseudospin densities averaged over sites A and B hardly
grow as long as the light field is weak. Because the behavior
of the Jeff ¼ 3

2
pseudospins is similar to that of the Jeff ¼ 1

2

pseudospins, we hereafter show only the Jeff ¼ 1
2
pseudo-

spins, which are directly related to the magnetic moments.
Thus, the pseudospins denote the Jeff ¼ 1

2
pseudospins unless

stated otherwise.
When the light field is increased, the antiparallel property

of the pseudospins at sites A and B breaks down, as shown in
Fig. 4. The time profiles of the x, y, and z components of the
pseudospin densities at site A ( j ð1=2ÞsiteA;x, j

ð1=2Þ
siteA;y, and j ð1=2ÞsiteA;z) and

at site B ( j ð1=2ÞsiteB;x, j
ð1=2Þ
siteB;y, and j ð1=2ÞsiteB;z) are shown for �ini ¼ �=2

in Figs. 4(a) and 4(b), respectively. At both sites, the x, y, and
z components show local maxima in this order as time
advances, and their short-time averages mainly increase with
time until the light field is switched off. Therefore, the ⊥
component of the averaged pseudospin density grows and
attains a positive value. This finding is consistent with the
effective magnetic field originating from Hð2Þ

F , which is
discussed in Sect. 4. In fact, when the signs of t3 and t 03 are
reversed to have ðt2 � t4Þ½t2 � t4 þ 2ðt3 � t1Þ� > 0, the effec-
tive magnetic field originating from Hð2Þ

F is reversed, and the
sign of the ⊥ component is numerically confirmed to be
reversed.

For the same light field at t ¼ 0 as that in Fig. 4 (FL ¼ 0:2
and �ini ¼ �=2), the ω dependence of the pseudospin
dynamics is shown in Fig. 5. The duration of photoexcitation
toff (’ 140) is set to be a multiple of the period 2�=!, which
depends on ω. The averaged ⊥ component of the pseudospin
densities 1

2
ð j ð1=2ÞsiteA;? þ j ð1=2ÞsiteB;?Þ evolves with time, as shown in

(a)

(b)

(c)

(d)

ini

Fig. 3. (Color online) Time profiles of x, y, and z components of (a, b)
Jeff ¼ 1

2
pseudospins and (c, d) Jeff ¼ 3

2
pseudospins (a, c) at site A and (b, d)

at site B, when excited by a circularly polarized light field with ! ¼ 0:3,
FL ¼ 0:02, and �ini ¼ �=2. The duration of photoexcitation is 0 < t <

toff ’ 147 (n ¼ 7).
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Fig. 5(a). It obtains a positive value when ω is small (at least
for ! 
 0:6; not shown), and its growth basically stops at
t ¼ toff because the effective magnetic fields disappear after
photoexcitation. If we could treat larger systems, some
degrees of freedom other than the pseudospin ones would act
as a heat bath, and the ⊥ component would decay. The fine
structures on the timescale below 6 (corresponding to the
energy scale above 1 eV) shown hereafter would originate
from the discreteness of the excitation spectra [Fig. 2(a)];
thus, they would disappear in the thermodynamic limit. The
presented ω-dependent behavior during the photoexcitation
would be related to the characteristics of in-gap states below
the Mott gap, i.e., it is presumably because different types of
spin–orbit excitons are produced. This is shortly explained.
Among the values of ω used in this calculation, the largest ⊥
component is realized with ! ¼ 0:3, which roughly corre-
sponds to a single spin–orbit exciton; thus, we mainly focus
on the dynamics in this case.

For ! ¼ 0:7, a double spin–orbit exciton would be
produced. We expect its motion to be quite different from
that of a single spin–orbit exciton during the photoexcitation
of left-hand circular polarization, as shown in Fig. 6. In both
cases, the overall direction of the current density is rotated
counterclockwise. For a single spin–orbit exciton, the hole in
the Jeff ¼ 3

2
subspace is simply pushed in the direction of the

electric field at the time, as those in the Jeff ¼ 1
2
subspace. On

average, it hops on the Z1 bond, on the Y1 bond, and then on
the X1 bond as time advances [Fig. 6(a)]. For a double spin–
orbit exciton, however, the holes in the Jeff ¼ 3

2
subspace

cannot occupy a single site; thus, the hopping processes are
necessarily correlated. If the holes in the Jeff ¼ 3

2
subspace are

initially located along a Z1 bond, a hole hops on the Y1 bond
and then the other hops on the Z1 bond to form a double
spin–orbit exciton on the Y1 bond. The next motion is
obtained by replacing the Z1 and Y1 bonds by the Y1 and X1

bonds, respectively. The motion after the next is obtained by
replacing the Y1 and X1 bonds by the X1 and Z1 bonds,
respectively. On average, a hole in the Jeff ¼ 3

2
subspace hops

on the X1 bond, on the Y1 bond, and then on the Z1 bond as
time advances [Fig. 6(b)]. Thus, these two types of spin–orbit
excitons have different sequences of the types of bonds on
which a hole hops. This implies that the order of the hopping
matrices in Eq. (40) is reversed for a double spin–orbit
exciton. Consequently, the effective magnetic field is reversed

(a)

(b)

(c)

ini

Fig. 5. (Color online) Time profiles of (a) averaged ⊥ component and (b)
averaged magnitude of Jeff ¼ 1

2
pseudospins, and that of (c) cosine of angle

between Jeff ¼ 1
2
pseudospins at sites A and B, when excited by a circularly

polarized light field with FL ¼ 0:2 and �ini ¼ �=2. The duration of
photoexcitation is 0 < t < toff ’ 147 (n ¼ 7) for ! ¼ 0:3, 138 (n ¼ 11)
for ! ¼ 0:5, 144 (n ¼ 16) for ! ¼ 0:7, and 140 (n ¼ 20) for ! ¼ 0:9.

(a)

(b)

ini

Fig. 4. (Color online) Time profiles of x, y, and z components of Jeff ¼ 1
2

pseudospins (a) at site A and (b) at site B, when excited by a circularly
polarized light field with ! ¼ 0:3, FL ¼ 0:2, and �ini ¼ �=2. The duration of
photoexcitation is 0 < t < toff ’ 147 (n ¼ 7).
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when double spin–orbit excitons are produced. This would be
the reason why the ⊥ component is reversed for ! ¼ 0:7.

To judge how efficiently the pseudospins are directed to
the ⊥ direction, we plot the averaged magnitude of the
pseudospin densities 1

2
ðj j ð1=2ÞsiteA j þ j j ð1=2ÞsiteB jÞ in Fig. 5(b). From

the comparison with Fig. 5(a), the ⊥ component is close
to the magnitude during the photoexcitation for ! ¼ 0:3,
indicating that the pseudospins at sites A and B are soon
directed nearly to the ⊥ direction. This is in contrast to the
case of weak light fields. To observe how the pseudospins are
aligned, we plot the cosine of the angle between the
pseudospin densities at sites A and B j ð1=2ÞsiteA � j ð1=2ÞsiteB =ðj j ð1=2ÞsiteA j �
j j ð1=2ÞsiteB jÞ in Fig. 5(c). Note that the cosine is −1 when they are
antiparallel, and it is 1 when they are parallel. The time
profile of the angle sensitively depends on ω. For ! ¼ 0:3,
the configuration of the pseudospins is changed from
antiparallel at t ¼ 0 to parallel, although their angle occa-
sionally becomes wide at an early stage. For ! ¼ 0:5, the
configuration of the pseudospins oscillates between nearly
antiparallel and nearly parallel. For ! ¼ 0:7, where the
averaged ⊥ component acquires a negative value [Fig. 5(a)],
the configuration of the pseudospins is rapidly changed from
antiparallel at t ¼ 0 to nearly parallel at an early stage,
although the configuration fluctuates on a short time scale.
The increment in the total energy is fast for ! ¼ 0:7, as
shown later, and the system seems rapidly thermalized by
photoexcitation. For ! ¼ 0:9, the pseudospin configuration is
more complicated and seems rather chaotic.

To clarify the relationship with the amount of energy
supplied by the light field, the time profiles are plotted for a
stronger light field in Fig. 7. For ! ¼ 0:3, the averaged ⊥
component of the pseudospins 1

2
ð j ð1=2ÞsiteA;? þ j ð1=2ÞsiteB;?Þ reaches a

maximum value and then decreases before the light field is
switched off [Fig. 7(a)]. The averaged ⊥ component of the

Jeff ¼ 3
2
pseudospins 1

2
ð j ð3=2ÞsiteA;? þ j ð3=2ÞsiteB;?Þ behaves in a similar

manner (not shown), and its maximum value (’ 0:011) is
about twice as large as that of the Jeff ¼ 1

2
pseudospins shown

here. The time profiles of the averaged charge density in the
Jeff ¼ 1

2
subspace 1

2
ð�ð1=2ÞsiteA þ �ð1=2ÞsiteB Þ and the total energy hHi

are shown in Figs. 7(b) and 7(c), respectively. For ! ¼ 0:3,
at the time when the averaged ⊥ component of the
pseudospins reaches a maximum value, holes have substan-
tially been transferred to the Jeff ¼ 3

2
subspace. Further

application of a light field transfers more holes to the Jeff ¼ 3
2

subspace, but it produces the opposite effect on the ⊥
component. This finding suggests that spin–orbit excitons are
directly involved with the growth and decay of the ⊥
component. Generally, when the decrease in �ð1=2Þi is rapid,
the increase in hHi is also rapid. This correlation between the

(a)

(b)

(c)

ini

Fig. 7. (Color online) Time profiles of (a) averaged ⊥ component of
Jeff ¼ 1

2
pseudospins, (b) averaged charge density in Jeff ¼ 1

2
subspace, and

(c) total energy, when excited by a circularly polarized light field with
FL ¼ 0:5 and �ini ¼ �=2. The duration of photoexcitation is the same as that
in Fig. 5.

(a)

(b)

Fig. 6. (Color online) Schematic hopping processes for (a) single and
(b) double spin–orbit excitons. The black circles show the positions of holes
in the Jeff ¼ 3

2
subspace.
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decreasing rate of �ð1=2Þi and the increasing rate of hHi is
observed for a broad range of FL and ω below the Mott gap.

The ω-dependent dynamics of the ⊥ component originates
from the fact that different types of spin–orbit excitons are
produced. When ω is increased from 0.3 through 0.5 to 0.7,
the rate of charge transfer to the Jeff ¼ 3

2
subspace is

increased. In particular, for ! ¼ 0:7, the rate of charge
transfer is significantly larger than in the other cases. This is
consistent with the picture that double spin–orbit excitons are
produced for ! ¼ 0:7, which has been presented along with
Fig. 6. When ω is further increased to 0.9, the rate becomes
small. When ω is increased from 1.0 through 1.1 to 1.2 above
the Mott gap, the initial change rate of the averaged ⊥
component for 0 < t < 10 is almost the same as that for
! ¼ 0:9, but the ⊥ component quickly turns to a sudden
decrease and almost vanishes, which appears to be due to
thermalization. For the pseudospins, doublons that are
produced with ω above the Mott gap would act as a heat
bath. The timescale of the quick decay process is consistent
with this picture (not shown).

For the same light field as that of ! ¼ 0:3 in Fig. 7, the
time profiles of the components of the current density
j ¼ �@hHi=@A are shown in Fig. 8, where the component is
parallel to one of X1, Y1, and Z1 in Fig. 1. It is shown that the
current basically flows in the direction of the electric field at
the time: the current flows almost parallel to X1, Y1, and Z1

when the electric field is parallel to X1, Y1, and Z1,
respectively. Although some fine structures appear for strong
light fields, this almost parallel behavior is independent of ω.
When we increase ω, the angular change rate of the direction
of the current density is accordingly increased. Even when ω
is increased to such an extent that the ⊥ components of the
pseudospins obtain negative values, the direction of the
current density is still rotated counterclockwise, following the
electric field, as in Fig. 8. This characteristic indicates that
whether the ⊥ component has a positive value or a negative
value is not simply determined by the rotational direction of
the current density.

7. Conclusions and Discussion

Photoinduced dynamics are theoretically investigated in a
Hubbard model for α-RuCl3, which shows a quantum-spin-

liquid state. In view of the fact that light fields are mainly
coupled to the charge degrees of freedom, we consider three
t2g orbitals per Ru site in the model and employ the
parameters in Ref. 51. The exact diagonalization method is
used for the ground state of a three-unit-cell system with
threefold-symmetric and periodic boundary conditions.
Photoinduced dynamics are obtained by numerically solving
the time-dependent Schrödinger equation.

Motivated by a recent observation of the photoinduced
inverse Faraday effect,33) we treat circularly polarized light
fields. To interpret the photoinduced dynamics, we use a
high-frequency expansion in the framework of quantum
Floquet theory to evaluate effective magnetic fields. We
derive two types of effective magnetic fields, although only
optical electric fields are introduced through the Peierls
phase. One is produced with the help of spin–orbit coupling
and originates from Hð3Þ

F,SO. The other is produced from the
commutators among the kinetic operators on the three bonds
and originates from Hð2Þ

F . It is independent of spin–orbit
coupling. These effective fields are useful for interpreting the
pseudospin dynamics under different strengths of the light
field.

The effective magnetic fields BeffðkÞ originating from
Hð3Þ

F,SO are odd functions of the momentum of a hole; thus,
they are produced by the optical electric field that breaks the
inversion symmetry in the momentum distribution of holes.
Their behaviors are simplified if we assume the threefold
symmetry in the transfer integrals. When the direction of bias
in the momentum distribution changes from X2 through Y2 to
Z2, the x component of BeffðkÞ is first enhanced, then the y
component is similarly enhanced, and finally the z component
is similarly enhanced. The momentum dependence of BeffðkÞ
at site B is obtained by reversing that at site A; thus, these
fields at sites A and B are almost antiparallel. When a weak
circularly polarized light field is applied, the numerically
obtained dynamics of the pseudospins at sites A and B are
explained by these behaviors of BeffðkÞ at respective sites.

The effective magnetic field originating from Hð2Þ
F produc-

es nonzero ⊥ components of the pseudospins for a circularly
polarized light field. They are responsible for the observed
inverse Faraday effect.33) The sign of the ⊥ component is
consistent with the effective magnetic field for small ω, but
the sign depends on the frequency of the light field. The
mechanism for this sign change above a threshold located in
the range of 0:60 < ! < 0:65 below the Mott gap is the
correlated hopping processes for a double spin–orbit exciton,
as explained in Fig. 6. During the photoexcitation of left-
hand (right-hand) circular polarization, the ⊥ component
grows to a positive (negative) value, at least for ! 
 0:6
below the Mott gap. In the present system of minimum size,
however, it is not certain that different types of spin–orbit
excitons are quantitatively reproduced in the spectra. This
sign change for ω above a threshold is not experimentally
observed.33) In α-RuCl3, the hopping parameters for the
second-nearest neighbors and the third-nearest neighbors are
not so small.51) As a consequence, the correlated hopping
processes would not be realized in as pure a form as
described in Fig. 6. The construction of and calculations in
an effective model for restricted degrees of freedom and of
larger system sizes would be future important topics.

ini

Fig. 8. (Color online) Time profiles of components of current density that
are parallel to X1, Y1, and Z1 in Fig. 1, when excited by a circularly
polarized light field with ! ¼ 0:3, FL ¼ 0:5, and �ini ¼ �=2. The duration of
photoexcitation is 0 < t < toff ’ 147 (n ¼ 7).
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Appendix: Effective Fields from H ð3Þ
F,SO within Jeff ¼ 3

2

Subspace

Among the terms in H ð3Þ
F,SO, we here show the terms that act

on pseudospins within the Jeff ¼ 3
2

subspace, which are
denoted by H

ð3;Jeff¼3
2
Þ

F,SO . This operator consists of qyi;Jzqi;J0z terms
with i ¼ j or next-nearest-neighbor sites i and j. Thus, it is the
sum of H

ð3;Jeff¼3
2
;AÞ

F,SO , where sites i and j belong to sublattice A,

and H
ð3;Jeff¼3

2
;BÞ

F,SO , where sites i and j belong to sublattice B. In

momentum space, the operator H
ð3;Jeff¼3

2
;AÞ

F,SO is written as

H
ð3;Jeff¼3

2;AÞ
F,SO ¼ �

X
k

ðqyA;k;3=2qyA;k;1=2qyA;k;�1=2qyA;k;�3=2ÞMAðkÞ

qA;k;3=2

qA;k;1=2

qA;k;�1=2

qA;k;�3=2

0
BBBB@

1
CCCCA; ðA:1Þ

where the creation and annihilation operators act on sublattice A, and the matrix MAðkÞ is given by

MAðkÞ ¼

CoutðkÞ þ 3

2
Bz
outðkÞ

ffiffiffi
3

p

2
ðBx

outðkÞ � iBy
outðkÞÞ � �ffiffiffi

3
p

2
ðBx�

outðkÞ þ iBy�
outðkÞÞ CinðkÞ þ 1

2
Bz
inðkÞ Bx

inðkÞ � iBy
inðkÞ �

� Bx
inðkÞ þ iBy

inðkÞ CinðkÞ � 1

2
Bz
inðkÞ

ffiffiffi
3

p

2
ðBx�

outðkÞ � iBy�
outðkÞÞ

� �
ffiffiffi
3

p

2
ðBx

outðkÞ þ iBy
outðkÞÞ CoutðkÞ � 3

2
Bz
outðkÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ðA:2Þ

where CinðkÞ and CoutðkÞ are even functions of k. Note that the effective magnetic fields Bx;y;z
in,outðkÞ originating from Hð3Þ

F,SO
include the Landé g-factor for Jeff ¼ 3

2
. Although they are not explicitly shown, the matrix elements denoted by � above are

nonzero. The effective magnetic fields appearing above are given by

Bx;y;z
in,outðkÞ ¼

X
m≠0

��
2ðmħ!Þ2 � ½Xm;in,outðkÞ; Ym;in,outðkÞ; Zm;in,outðkÞ�; ðA:3Þ

with

Xm;inðkÞ ¼ ð�ieik�Y2 þ ie�ik�Y2 ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ
� 1

4
ð2t1t 02 þ 2t4t

0
1b � 2t3t

0
2 � t4t

0
1a � t4t

0
3Þ

þ ð�ieik�Z2 þ ie�ik�Z2 ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ
� 1

4
ð2t 01bt 02 � 2t 01bt

0
4b þ t 01at

0
4b þ t 03t

0
4b � t 01at

0
2 � t 02t

0
3Þ

þ ð�ieik�X2 þ ie�ik�X2ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
� 1

4
ð2t3t 04b � 2t1t

0
4b � 2t4t

0
1b þ t4t

0
1a þ t4t

0
3Þ; ðA:4Þ

Ym;inðkÞ ¼ ð�ieik�Z2 þ ie�ik�Z2ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

4
ð2t 01bt 02 � 2t 01bt

0
4b þ t 01at

0
4b þ t 03t

0
4b � t 01at

0
2 � t 02t

0
3Þ

þ ð�ieik�X2 þ ie�ik�X2 ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ

� 1

4
ð2t1t 02 þ 2t4t

0
1b � 2t3t

0
2 � t4t

0
1a � t4t

0
3Þ

þ ð�ieik�Y2 þ ie�ik�Y2ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ

� 1

4
ð2t3t 04b � 2t1t

0
4b � 2t4t

0
1b þ t4t

0
1a þ t4t

0
3Þ; ðA:5Þ

Zm;inðkÞ ¼ ½ð�ieik�X2 þ ie�ik�X2 ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
þ ð�ieik�Y2 þ ie�ik�Y2ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ�

� 3

2
ðt4t 02 � t4t

0
4bÞ

þ ð�ieik�Z2 þ ie�ik�Z2ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ
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� 3

2
ð4t 04bt 04b � 4t 02t

0
2Þ; ðA:6Þ

Xm;outðkÞ ¼ �ieik�Y2 ðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ

� 1

6
ð6t2t 04b þ 2t4t

0
1b � t4t

0
1a � t4t

0
3Þ

þ ie�ik�Y2 ðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ

� 1

6
ð�6t4t 04a þ 3t4t

0
3 � 3t4t

0
1a þ 2t1t

0
2 � 2t3t

0
2Þ

� ieik�Z2ðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

6
ð6t 02t 04a þ 3t 01at

0
4b � 3t 03t

0
4b þ 2t 01bt

0
2 � t 01at

0
2 � t 02t

0
3Þ

þ ie�ik�Z2 ðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

6
ð�6t 04at 04b þ 3t 01at

0
2 � 3t 02t

0
3 � 2t 01bt

0
4b þ t 01at

0
4b þ t 03t

0
4bÞ

� ieik�X2 ðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ

� 1

6
ð6t4t 04a þ 3t4t

0
3 � 3t4t

0
1a þ 2t3t

0
4b � 2t1t

0
4bÞ

þ ie�ik�X2ðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ

� 1

6
ð�6t2t 02 � 2t4t

0
1b þ t4t

0
1a þ t4t

0
3Þ; ðA:7Þ

Ym;outðkÞ ¼ �ieik�Z2ðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

6
ð�6t 04at 04b þ 3t 01at

0
2 � 3t 02t

0
3 � 2t 01bt

0
4b þ t 01at

0
4b þ t 03t

0
4bÞ

þ ie�ik�Z2ðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

6
ð6t 02t 04a þ 3t 01at

0
4b � 3t 03t

0
4b þ 2t 01bt

0
2 � t 01at

0
2 � t 02t

0
3Þ

� ieik�X2ðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ

� 1

6
ð�6t4t 04a þ 3t4t

0
3 � 3t4t

0
1a þ 2t1t

0
2 � 2t3t

0
2Þ

þ ie�ik�X2 ðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ

� 1

6
ð6t2t 04b þ 2t4t

0
1b � t4t

0
1a � t4t

0
3Þ

� ieik�Y2 ðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ

� 1

6
ð�6t2t 02 � 2t4t

0
1b þ t4t

0
1a þ t4t

0
3Þ

þ ie�ik�Y2ðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ

� 1

6
ð6t4t 04a þ 3t4t

0
3 � 3t4t

0
1a þ 2t3t

0
4b � 2t1t

0
4bÞ; ðA:8Þ

Zm;outðkÞ ¼ ½ð�ieik�X2 þ ie�ik�X2 ÞðJ�mð�Y1ÞJmðZ1Þ þ Jmð�Y1ÞJ�mðZ1ÞÞ
þ ð�ieik�Y2 þ ie�ik�Y2 ÞðJ�mð�Z1ÞJmðX1Þ þ Jmð�Z1ÞJ�mðX1ÞÞ�

� 1

6
ð2t2t 01a � 2t2t

0
3 þ t4t

0
2 � t4t

0
4bÞ

þ ð�ieik�Z2 þ ie�ik�Z2 ÞðJ�mð�X1ÞJmðY1Þ þ Jmð�X1ÞJ�mðY1ÞÞ

� 1

6
ð4t 03t 04a � 4t 01at

0
4a þ t 04bt

0
4b � t 02t

0
2Þ: ðA:9Þ

Since Bx;y
outðkÞ in Eq. (A·2) are complex quantities, the

imaginary (and k-even) part of ByðxÞ
out ðkÞ should be added to

or subtracted from the real (and k-odd) part of BxðyÞ
out ðkÞ to be

interpreted as the x (y) component of a field. Thus, the
resultant field appearing in the ð1; 2Þ and ð2; 1Þ elements of

MAðkÞ is different from that appearing in the ð3; 4Þ and ð4; 3Þ
elements. The operator Hð3;Jeff¼3

2
;BÞ

F,SO is given by MAðkÞ !
MBðkÞ ¼ MAð�kÞ in Eq. (A·1) and qA;k;� ! qB;k;�, q

y
A;k;� !

qyB;k;� for � ¼ 3=2, 1=2, �1=2, and �3=2; the creation and
annihilation operators now act on sublattice B. Here also, the
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effective magnetic fields have the properties originating from
the symmetry mentioned in Sect. 3.1. The simultaneous
exchanges of vectors X1 for Y1, X2 for �Y2, and Z2 for �Z2

lead to the exchanges of Bx
inðkÞ for �By

inðkÞ, Bz
inðkÞ for

�Bz
inðkÞ, Bx

outðkÞ for �By
outðkÞ, and Bz

outðkÞ for �Bz
outðkÞ.
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