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We discuss the mechanism and the conditions for the appearance of synchronized charge oscillations which have been
observed experimentally and theoretically after strong photoexcitation of dimerized systems. In the Hubbard model with
on-site repulsion, the Bloch equations for a wave-number-dependent pseudospin—whose components describe the
charge-density difference, current density, and bond density between the two sublattices— involve an alternatingly tilted
pseudomagnetic field, which assists the synchronization of pseudospins with different wave numbers, irrespective of the
initial condition. This fact is numerically confirmed by the dynamics in finite lattices based on the exact diagonalization
method. In the presence of nearest-neighbor repulsion, however, the synchronization can be hindered by excitons.
Therefore, the excitation of a sufficiently large density of free electron–hole pairs, but low density of excitons, is needed
to achieve synchronization.

1. Introduction

Among various nonequilibrium phenomena, the many-
electron dynamics in far-from-equilibrium lattice systems has
attracted much attention.1–7) Many interesting effects, includ-
ing photoinduced phase transitions, are nonlinear and caused
by interactions.8–31) With progress in the experimental
techniques, ultrafast phenomena that necessarily involve
high-energy processes become increasingly important. Which
electronic phase is realized in a correlated electron material is
often determined by a subtle competition between the kinetic
and interaction terms in the Hamiltonian. Thus, low-energy
properties are linked to high-energy processes, which makes
ultrafast control possible in some cases.

During photoexcitation, high harmonic generation is
observed in solids and reflects properties of their electronic
states.32–40) Recently, second harmonic generation has been
observed in a centrosymmetric organic superconductor
κ-(bis[ethylenedithio]tetrathiafulvalene)2Cu[N(CN)2]Br [κ-
(BEDT-TTF)2Cu[N(CN)2]Br] through a nonlinear petahertz
current before substantial scattering processes occur.41) In this
compound,42–51) which is known to have a dimer lattice,
stimulated emission is observed after strong photoexcita-
tion.52) This stimulated emission is also caused by a nonlinear
charge oscillation— an electronic breathing mode— as has
been shown by numerical calculations based on the exact
diagonalization method.53) When the photoexcitation is weak,
i.e., when the optical field amplitude is small, different charge
oscillations appear whose frequencies correspond to the peak
energies in the optical conductivity spectrum. When photo-
excitation is strong, however, these charge oscillations
synchronize to produce the electronic breathing mode. The
synchronization can be demonstrated numerically by in-
troducing randomness into the transfer integrals to suppress it
and showing that sufficiently strong on-site repulsion over-
comes the randomness and recovers the effect.54) It has also
been discussed that strong on-site attraction produces a pair
analog of the electronic breathing mode.55)

A widely studied lattice with two atoms in a unit cell is the
honeycomb lattice, on which a synchronization transition and
resultant coherent oscillations have been reported to occur in
a recent mean-field investigation.39) Here, it was pointed out
that the equations of motion are somewhat similar to those

in the Kuramoto model,56–58) where the presence of a
synchronization transition is established. This analogy is
highly suggestive, but it implies that whether or not the in-
phase synchronization is realized depends on the sign of
the interaction. Hence, the detailed form of the equations
of motion merits further investigations. In the present work,
we will adopt a pseudospin representation and show that
the synchronization is indeed sensitive to the sign of the
interaction, a conclusion that will be confirmed numerically
using the exact diagonalization method. We hope that these
insights into the mechanism and conditions for the
synchronization of charge oscillations will be helpful for
future experiments related to ultrafast control of charge
motion.

Within a mean-field approximation, charge-oscillation
dynamics is described by the Bloch equations for pseudo-
spins in a similar manner to those for photoinduced
magnetization59) and pairing60) dynamics, or photoinduced
excitonic condensation dynamics,25) which allows us to
intuitively grasp the essence of the collective evolution.
The time-dependent BCS pairing problem is known to be
integrable,60) and its similarity to and difference from the
present problem needs to be clarified. On short timescales,
the mean-field picture basically holds even when electron
correlations are taken into account.31,59)

The numerical calculations in this paper consider one-
dimensional dimerized lattices. They are bipartite and consist
of two sublattices. However, the synchronization mechanism
described by the Bloch equations is independent of the
dimensionality of the system, and the synchronization
phenomena have been numerically observed in one- and
two-dimensional systems.53–55) As representative systems, we
treat the Hubbard and a spinless fermion model. The former
represents a model with repulsive interactions within a
sublattice, while the latter possesses repulsive interactions
between the sublattices, and their synchronization conditions
are different. To show the sensitivity to the initial condition in
the latter model, we prepare initial nonequilibrium states in
different ways, by photoexcitation and quenching.

2. Pseudospin Representation

To describe collective dynamics, the pseudospin repre-
sentation is often useful. Here, following Ref. 39, we employ
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a mean-field approximation to treat charge-oscillation
dynamics in this representation and investigate the mechan-
ism for synchronization. We consider a Hubbard model with
on-site repulsion U and a spinless fermion model with
nearest-neighbor repulsion V on dimer lattices. Although the
discussion in this section does not depend on the dimension-
ality of the system, we use one-dimensional lattices with
alternating transfer integrals, t1 and t2, and periodic boundary
conditions when the kinetic term is explicitly shown, to make
the relationship with the results in the next section clear. The
distance between neighboring sites is set to be equal and
unity when the system is photoexcited.53) The Hubbard
model can be written as

HU ¼
XN�1
j¼0

X
�

½t1ðeyj�oj� þ oyj�ej�Þ

þ t2ðoyj�ejþ1� þ eyjþ1�oj�Þ
þ Uðeyj"ej"eyj#ej# þ oyj"oj"o

y
j#oj#Þ�; ð1Þ

while the Hamiltonian of the spinless fermion model is

HV ¼
XN�1
j¼0

½t1ðeyj oj þ oyj ejÞ þ t2ðoyj ejþ1 þ eyjþ1ojÞ

þ Vðeyj ejoyj oj þ oyj oje
y
jþ1ejþ1Þ�; ð2Þ

where eyj� (eyj ) creates an electron with spin σ (a fermion) at
site j of the “even” sublattice and oyj� (o

y
j ) creates an electron

with spin σ (a fermion) at site j of the “odd” sublattice.
In what follows in this section, we mainly discuss the

Hubbard model and its charge-oscillation dynamics. When
nontrivial differences between the two models exist, they
will be pointed out. We use a mean-field approximation
corresponding to the Hartree approximation, which allows
us to capture the essence of interaction effects. Via the
Fourier transforms ek� ¼ ð1= ffiffiffiffi

N
p ÞPj e

�ikjej� and ok� ¼
ð1= ffiffiffiffi

N
p ÞPj e

�ikjoj� with N denoting the number of dimers,
the mean-field Hamiltonian can be written as

HMF
U ¼

X
k�

eyk� oyk�
� � ðU=2Þ�n hðkÞ

h�ðkÞ �ðU=2Þ�n

 !
ek�

ok�

 !
; ð3Þ

with

�n ¼ heyj�ej� � oyj�oj�i; ð4Þ
for the Hubbard model and as

HMF
V ¼

X
k

eyk oyk
� � �2V�n hðkÞ

h�ðkÞ 2V�n

 !
ek

ok

 !
; ð5Þ

with

�n ¼ 1

2
heyj ej � oyj oji; ð6Þ

for the spinless fermion model, where constant terms have
been omitted. On the one-dimensional lattice, the off-
diagonal element is given by

hðkÞ ¼ t1 þ t2e
�ik: ð7Þ

Following Ref. 39, we define

eyk� oyk�
� � ¼ ayk� byk�

� � 1ffiffiffi
2

p 1 � 1

1 1

 !
e�i�k=2 0

0 ei�k=2

 !
;

ð8Þ

with �k ¼ tan�1½ImðhðkÞÞ=ReðhðkÞÞ� and rewrite the mean-
field Hamiltonian in Eq. (3) as

HMF
U ¼

X
k�

ayk� byk�
� � �h0ðkÞ ðU=2Þ�n

ðU=2Þ�n h0ðkÞ

 !
ak�

bk�

 !
; ð9Þ

with h0ðkÞ ¼ sgnReðhð0ÞÞjhðkÞj and �n in Eq. (4) as

�n ¼ 1

2N

X
k�

hayk�bk� þ byk�ak�i: ð10Þ

As in Ref. 60, we define the pseudospin components as

r1k� ¼ hayk�bk� þ byk�ak�i; ð11Þ
r2k� ¼ h�iayk�bk� þ ibyk�ak�i; ð12Þ
r3k� ¼ hayk�ak� � byk�bk�i: ð13Þ

Here the normalization condition r21k� þ r22k� þ r23k� ¼ 1 is
always satisfied for k� for which one state is initially
occupied and the other is initially unoccupied, and r21k� þ
r22k� þ r23k� ¼ 0 is satisfied otherwise. In equilibrium with
�n ¼ 0 and h0ðkÞ < 0 (i.e., t1 þ t2 < 0), r3k� ¼ �1 for k� in
the former case. Further, we define Ω60) as � ¼ ðU=2Þ�n.
The self-consistency condition leads to

� ¼ U

4N

X
k�

r1k�: ð14Þ

The pseudospin dynamics is described by the Bloch
equations,

_r1k� ¼ 2h0ðkÞr2k�; ð15Þ
_r2k� ¼ �2h0ðkÞr1k� � 2�r3k�; ð16Þ
_r3k� ¼ 2�r2k�; ð17Þ

which are consistent with the normalization condition. For
U > 0, there is no static solution with � ≠ 0.

For the spinless fermion model with � � 2V�n ¼
ðV=NÞPk r1k, the Bloch equations can be obtained by
replacing Ω by �� in Eqs. (15)–(17). For V larger than a
critical value Vc, there is a static solution with � ≠ 0, and the
dynamical problem becomes equivalent to the time-depend-
ent BCS pairing problem.60)

Equations (15)–(17) describe the Larmor precession of the
pseudospin

_rk�ðtÞ ¼ BkðtÞ � rk�ðtÞ; ð18Þ
in a pseudo magnetic field

BkðtÞ ¼ tðB1kðtÞ; B2k; B3kÞ ¼ tð2�ðtÞ; 0;�2h0ðkÞÞ; ð19Þ
where the time dependence is made explicit here, and
B3k ¼ �2h0ðkÞ > 0 for h0ðkÞ < 0. The x, y, and z components
of the pseudospin correspond to the charge-density differ-
ence, current density, and bond density between the “even”
and “odd” sublattices. The rate of rotation around the z axis
depends on the wave number. In what follows, we assume
that U > 0. The rotation axis is tilted by �ðtÞ whose sign is
that of �nðtÞ, i.e., that of the majority of r1k�ðtÞ. When the
majority of r1k�ðtÞ take positive (negative) values, �ðtÞ is
positive (negative), and the rotation axis is tilted to have a
positive (negative) x component, as shown in the left (right)
panel of Fig. 1. By tilting the rotation axis in this way, most
of the pseudospins are located on the same side of the
rotation axis, those near the bottom tð0; 0;�1Þ are accel-
erated, and consequently their dynamics become similar,
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which assists the synchronization of charge oscillations.
These considerations suggest that charge oscillations are
synchronized regardless of the initial distribution of r1k�.

On the right hand side of Eq. (16), the sign of h0ðkÞ and
that of r3k� are the same, as is obvious from Eqs. (9) and (13),
at least near equilibrium and the sign of the majority of r1k�ðtÞ
and the sign of �ðtÞ are the same, as already pointed out.
Thus, a U-driven [see Eq. (14)] but k-independent force
component is applied in the direction of the majority of the
k-dependent current flow, which is equivalent to the above
picture based on the tilted rotation axis.

A solution to the Bloch equations can be obtained,
according to Ref. 60, by the ansatz

r1k� ¼ Ak�; r2k� ¼ Bk
_�; r3k� ¼ Ck�

2 �Dk: ð20Þ
The Bloch equations and the normalization condition lead to
Ak ¼ 2h0ðkÞBk, Bk ¼ Ck, and

_�2 þ�4 þ ð2h0ðkÞÞ2 � 2Dk

Ck

� �
�2 þ D2

k � 1

C2
k

¼ 0: ð21Þ

If the above equation is independent of k, and of the form

_�2 þ�4 þ ð�2
� � �2

þÞ�2 ��2
��

2
þ ¼ 0; ð22Þ

it has a solution described by the elliptic cosine function,

�ðtÞ ¼ �þ cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ �2�

p
t;

�þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ �2�

p
 !

: ð23Þ

When we set the amplitude �þ ¼ � and the frequencyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ �2�

p
¼ �2h0ð0Þ for t1; t2 < 0,53) the elliptic modulus

becomes �þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ �2�

p
¼ �=ð�2h0ð0ÞÞ. In order for

Eq. (21) to become Eq. (22), the k-dependent factors must
satisfy

Ck ¼ �2½ðð2h0ð0ÞÞ2 � ð2h0ðkÞÞ2Þ2 þ 4ð2h0ðkÞÞ2�2��1
2 ; ð24Þ

Dk ¼ ½ð2h0ð0ÞÞ2 � ð2h0ðkÞÞ2 � 2�2� Ck

�2 : ð25Þ
The negative sign in Eq. (24) is due to the self-consistency
condition, Eq. (14), which can be rewritten as 1=U ¼
1=ð4NÞP0

k� 2h
0ðkÞCk, where the summation is over the k�

for which the pseudospin has a nonzero magnitude. In the
limit of vanishing oscillation amplitude � ! 0, Dk ! 1, and
r3k� ! �1, i.e., the solution indeed approaches the equi-
librium state. Although the initial condition must satisfy
Eqs. (24) and (25) for the pseudospin dynamics to be exactly
described by the elliptic cosine function and this is not
generally achieved by a photoexcitation, this solution
strongly suggests that charge oscillations are synchronized
by a sufficiently large U, which has indeed been observed

previously53,54) and will also be demonstrated in the next
section. The electronic breathing mode is more easily
described in real space rather than in momentum space, but
it is controlled by a set of equations analogous to Eqs. (15)–
(17), as is explained in the Appendix.

For the spinless fermion model, the situation is quite
different from the Hubbard model. For V > Vc, a static
charge ordered state is realized in equilibrium. As mentioned
before, its nonequilibrium dynamics is known60) to be
described by another elliptic function, the delta amplitude,
whose small-amplitude limit corresponds to the Higgs
amplitude mode. For 0 < V < Vc, the excitonic effect stems
from the coupling among electron–hole pairs aykbk with
different k’s through the element 2V�n of the mean-field
Hamiltonian. An electron and a hole are bound by V to form
an exciton, which is described by a linear combination of
aykbk. If the initial state contains such excitons, the charge-
oscillation dynamics contains a slow component and the
synchronization is difficult to achieve. In the pseudospin
representation, the rotation axis is tilted in the direction
opposite to the Hubbard case. Thus, a V-driven k-independent
force component is applied in the direction opposite to the
current flow, which allows the existence of a charge-ordered
state for V > Vc. For 0 < V < Vc, however, this k-inde-
pendent force component may lead to a synchronization if the
initial state does not have a significant excitonic component.
This fact is numerically demonstrated in the next section.

Note that a similar synchronization phenomenon of
pseudospins has been discussed in the context of the Higgs
mode in superconductors.61,62) There, the Bloch equations
were linearized with respect to the time-dependent parts,
from which a resonant precession of pseudospins was
obtained in the long-time asymptotic evolution of the order
parameter. In the present case, on the other hand, the
equilibrium state has no order parameter. After the strong
photoexcitation, the system has no external field and its initial
state is far from equilibrium. Although Eq. (24) has a factor
that appears associated with resonance, the synchronization
mechanism is different from that in the resonant precession
discussed in Ref. 62.

3. Dynamics from Charge Disproportionation

Employing one-dimensional lattices, Eqs. (1) and (2), with
periodic boundary conditions, we numerically solve the time-
dependent Schrödinger equation to investigate the charge-
oscillation dynamics from far-from-equilibrium states using
the exact diagonalization method.63) For the transfer integrals,
we use t1 ¼ �0:3 and t2 ¼ �0:1, from which the frequency
of the electronic breathing mode is given by53)

!osc ¼ 2ðjt1j þ jt2jÞ ¼ 0:8: ð26Þ
Note that this frequency is independent of U in the Hubbard
model and independent of V in the one-dimensional spinless
fermion and extended Hubbard models, although it is
lowered by intersite repulsion Vij in the two-dimensional
extended Hubbard model for κ-(BEDT-TTF)2Cu[N(CN)2]-
Br.53) In the noninteracting case, the electronic breathing
mode is merely one of the optically active modes in dimer
lattices. The other modes are suppressed by U or V after
strong photoexcitation. The time slice employed in the
numerical solutions of the time-dependent Schrödinger

Fig. 1. (Color online) Precession of a pseudospin when the majority of
the pseudospins have positive x components (left panel) and negative x
components (right panel) for U > 0.
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equation is dt ¼ 0:02 for small U or V, while smaller dt
values are used for large U or V to ensure the conservation of
the total energy and of the norm. The number of sites is
denoted by L (L ¼ 2N). We use system sizes up to L ¼ 16 for
the Hubbard model at quarter filling and up to L ¼ 24 for the
spinless fermion model at half filling. When photoexcitations
are used to produce nonequilibrium states, the procedure is
the same as in previous studies,53,54) i.e., we use symmetric
one-cycle electric-field pulses, AðtÞ ¼ ðcF=!cÞ½cosð!ctÞ �
1��ðt þ ð2�=!cÞÞ�ð�tÞ, with central frequency !c and field
amplitude F. In the quench calculations, we add a staggered
potential ��Pj�ðeyj�ej� � oyj�oj�Þ to Eq. (1) or ��

P
jðeyj ej �

oyj ojÞ to Eq. (2) to obtain the ground state and use this state as
the initial state at t ¼ 0. The charge-oscillation dynamics is
then computed for t > 0 with � ¼ 0. Fourier spectra of the
charge density denote the absolute values of the Fourier
transforms of the time profiles (0 < t < 103) of the charge
density immediately after setting � ¼ 0 or immediately after
the photoexcitation.

Before showing numerical results, we consider the
Hubbard model in the limit of infinitely large repulsion,
U ¼ 1. In this limit, it becomes equivalent to a spinless
fermion model at doubled filling without interaction,

HV¼0 ¼
X
k

ayk byk
� � �h0ðkÞ 0

0 h0ðkÞ

 !
ak

bk

 !
; ð27Þ

with h0ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 þ 2t1t2 cos k

p
, i.e., to an integrable

system; thus, independent of the frequency, the charge
oscillations do not decay. At quarter filling, (N=2) spin-up
and (N=2) spin-down electrons are present. When an electron
is virtually moved through a distance of L sites, it passes over
(N=2) fermions with the opposite spin. If (N=2) is odd,
the outcome is different from the similar process in the
noninteracting spinless fermion model or in the fully
polarized Hubbard model by a factor (−1). Thus, the allowed
wave numbers are k ¼ ð2�=NÞj with j being an integer for
even (N=2) and k ¼ ð�=NÞð2j þ 1Þ for odd (N=2). On the
other hand, the Hubbard model with U ¼ 0 is equivalent to
the noninteracting spinless fermion model at the same filling;
thus, the allowed wave numbers are always k ¼ ð2�=NÞj. The
charge-density difference 2�n can be rewritten as

2�n ¼ 1

N

X
j

heyj ej � oyj oji ¼
1

N

X
k

haykbk þ bykaki: ð28Þ

Thus, it is maximized by the state
Q

k
1ffiffi
2

p ðayk þ bykÞj0i, which
is set to be the initial state of j�ðtÞi, so that

j�ðtÞi ¼
Y
k

1ffiffiffi
2

p ðeih0ðkÞtayk þ e�ih
0ðkÞtbykÞj0i: ð29Þ

In this state, the time evolution of 2�n is given by

2�nðtÞ ¼ 1

N

X
k

cos 2h0ðkÞt: ð30Þ

Its Fourier spectrum has peaks at !k ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 þ 2t1t2 cos k

p
with the k values described above,

i.e., k ¼ 0, π for U ¼ 0 and ��=2 for U ¼ 1 if L ¼ 4

(N ¼ 2), k ¼ 0;��=2; � for U ¼ 0 and 1 if L ¼ 8 (N ¼ 4),
etc.

3.1 Hubbard model at quarter filling
First we show in Fig. 2 that the Fourier spectrum of the

charge density,
P

�heyj�ej�i or
P

�hoyj�oj�i, evolving from a
near-equilibrium initial state, has peaks at energies where the
optical conductivity spectrum has peaks. Here, the optical
conductivity spectrum is calculated for the ground state as in
previous studies.49) It is also shown in this figure that the
Fourier spectrum of the charge density evolving from the
near-equilibrium state with small charge disproportionation
(� ¼ 10�2) is quite different from that evolving from a state
with large charge disproportionation (� ¼ 1). The latter is
dominated by the electronic breathing mode at ! ¼ 0:8,
although this mode is significantly broadened, reflecting its
short lifetime.

The Fourier spectra of the charge density evolving from
the state with large charge disproportionation (� ¼ 1) are
shown in Figs. 3(a) to 3(c) for different system sizes from
L ¼ 4 to 16. For very weak repulsion (U ¼ 10�2), the spectra
have discrete peaks whose energies are given by !k with
k ¼ ð2�=NÞj. For very strong repulsion (U ¼ 8:0), the
systems become close to the noninteracting spinless fermion
model with periodic (for even N=2) or antiperiodic (for odd
N=2) boundary conditions; thus, the spectra have discrete
peaks whose energies are given by !k with k ¼ ð2�=NÞj or
ð�=NÞð2j þ 1Þ, respectively. In both cases, the systems are
close to integrable ones, and all the charge oscillations are
long-lived, i.e., the peaks are narrow and high. In the figures
for larger systems, the corresponding peak heights are
multiplied by factors smaller than unity, which allows them
to be compared with intermediate repulsion (U ¼ 0:8) cases.
Correlation effects become significant when the repulsion
strength is intermediate. In this case, charge oscillations are
synchronized53,54) until they finally decay due to dephasing.
The resultant electronic breathing mode has a broad peak
near ! ¼ !osc. The peak position is slightly below !osc for
L ¼ 16, but it rapidly approaches !osc with increasing L, and
it is expected to be at !osc in the thermodynamic limit. As the
system size L increases, the difference between the very
weak=strong and the intermediate repulsion cases, i.e., the
difference between the nearly integrable and the strongly
correlated cases, becomes apparent in Fig. 3.

For the largest system (L ¼ 16) with intermediate
repulsion (U ¼ 0:8) we have calculated the Fourier spectra

Fig. 2. (Color online) Optical conductivity spectrum in the ground state
and Fourier spectra of the charge density from near-equilibrium (� ¼ 10�2)
and far-from-equilibrium (� ¼ 1) initial states in the Hubbard model with
L ¼ 16 and U ¼ 0:8. The inset illustrates the breathing mode on the
dimerized lattice.
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with different initial states, as shown in Fig. 4. The initial
states with large charge disproportionation are obtained either
as the ground state with large alternating site energies
(� ¼ 1) or by the application of one-cycle large-amplitude
(F ¼ 0:5) electric-field pulses with different central frequen-
cies !c. Although the detailed structures are different, all the
spectra are similar and dominated by the electronic breathing
mode at ! ¼ 0:8. Thus, the synchronization of charge
oscillations is independent of the preparation of the initial
state. It is universally observed for states with large charge
disproportionation in the Hubbard model with intermediate
repulsion.

3.2 Spinless fermion model at half filling
In the previous section, we mentioned that the excitonic

effect should be taken into account in the model with nearest-
neighbor repulsion. This implies that the charge-oscillation
dynamics is sensitive to how the initial state is prepared.
Hence, we mainly use one-cycle electric-field pulses with a
central frequency near the absorption edge at ! ¼ 0:8,
!c ¼ 0:7, which allow excitations of many free electron–hole
pairs. We show in Fig. 5 that the Fourier spectrum of the
charge density, heyj eji or hoyj oji, evolving from a near-
equilibrium state, has peaks at energies where the optical
conductivity spectrum has peaks. Both spectra are dominated
by an excitonic peak at ! ’ 0:4 even if the near-equilibrium
initial state is prepared by a weak photoexcitation (F ¼ 10�2)
with !c ¼ 0:7. This figure also shows that, if the initial state
is prepared by a strong photoexcitation (F ¼ 0:5) to be far
from equilibrium, the Fourier spectrum is dominated by the
electronic breathing mode at ! ¼ 0:8, which is in contrast to
the Fourier spectrum after a weak photoexcitation.

The Fourier spectra of the charge density after strong
photoexcitations (F ¼ 0:5) are shown in Fig. 6 for different
repulsion strengths V below the critical value Vc. For V ¼ 0,
the system is integrable, and all the charge oscillations have
infinitely long lifetimes. The corresponding discrete peaks

(b)

(c)

(a)

Fig. 3. (Color online) Fourier spectra of the charge density from far-from-
equilibrium (� ¼ 1) initial states in the Hubbard model with (a) L ¼ 4,
(b) L ¼ 8, (c) L ¼ 16 for U ¼ 10�2, 0.8, and 8.0.
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appear at !k with k ¼ ð�=6Þj, and their peak heights are
multiplied by 0.1 in order for them to be comparable with the
nonintegrable cases. For small V (V ¼ 0:1), some structures
in the Fourier spectrum reflect the peaks at V ¼ 0, but they
are significantly broadened. For V ¼ 0:1, 0.2, and 0.3, the
Fourier spectra are dominated by the electronic breathing
mode at ! ¼ 0:8, but its peak height decreases with
increasing V. For V ¼ 0:4, the corresponding peak appears
slightly blueshifted, although V is still smaller than Vc. In
general, the peak associated with the electronic breathing
mode is considerably broadened when V approaches Vc ’
2jt1j ¼ 0:6, and it disappears in the charge-ordered phase at
V > Vc.53)

For V ¼ 0:2, we have also calculated the Fourier spectra
with different initial states with large charge disproportiona-
tion, as shown in Fig. 7. They are sensitive to the initial
condition. When the initial state is prepared by a photo-
excitation with !c ¼ 0:7, the spectrum is dominated by the
electronic breathing mode. However, when !c is lowered to
allow the exciton at ! ’ 0:4 (Fig. 5) to be excited, the
Fourier spectra have large contributions from the exciton and
smaller contributions from the electronic breathing oscil-
lation. When the initial sate is prepared by � ¼ 1, the Fourier
spectrum becomes more complex, presumably because
various electron–hole pairs are involved. Thus, to synchron-
ize charge oscillations, the initial state must be strongly
photoexcited with a frequency that produces many free and
few bound electron–hole pairs.

4. Conclusions

To clarify the mechanism for the previously observed
synchronization of charge oscillations52–54) and investigate
the conditions for the appearance of this phenomenon, we
analytically studied the Bloch equations in the mean-field
approximation and numerically studied the charge-oscillation
dynamics using the exact diagonalization method for the
Hubbard and spinless fermion models on one-dimensional
dimerized lattices.

In one of the Bloch equations, the time derivatives of
current densities between the sublattices are determined by
two terms, one of which is of kinetic origin and the other is
of interaction origin. The kinetic term depends on the wave

number, while the term derived from the interaction is
proportional to a wave number independent and thus
universal factor. The latter facilitates the synchronization of
charge oscillations. In the Hubbard model with U > 0, more
precisely speaking, when the interaction within a sublattice
is repulsive, the kinetic term and the interaction term have
the same sign and constructively work together. From the
viewpoint of pseudospins, the rotation axis describing the
Larmor precession is alternatingly tilted in such a way that
it leads pseudospins of different wave numbers to be
synchronized. In the spinless fermion model with V > 0,
more precisely speaking, when the interaction between
the two sublattices is repulsive, the kinetic term and the
interaction term have opposite signs. This allows the
existence of static charge order for V > Vc. For V < Vc, the
synchronization of charge oscillations is possible but requires
suitable excitation protocols.

The above insights based on the analytic form of the Bloch
equations are all consistent with the Fourier analyses of the
numerically obtained charge-oscillation dynamics. To pre-
pare initial states with charge disproportionation, we either
quenched a staggered potential to zero or applied one-cycle
electric-field pulses. In the Hubbard model with intermediate
repulsion, i.e., sufficiently away from the integrable limits of
U ¼ 0 and 1, the synchronization is achieved irrespective of
how the initial state is prepared. In the spinless fermion
model with V < Vc, a sufficiently large number of free
electron–hole pairs must be excited to achieve the synchro-
nization, which is hindered by excitons and is not achieved
by the quenching. These results clarify the conditions for the
synchronization of charge oscillations on dimer lattices,
which may guide the study of synchronization phenomena in
different classes of lattices.
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Appendix: Breathing Mode in the Pseudospin Picture

In this appendix we show that the equations governing the
charge motion in a real-space representation are equivalent
to the pseudo-spin equations (15)–(17) and explain the
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synchronization leading to the observed breathing mode.
Although the following discussion does not depend on the
dimensionality of the system, we consider the electronic
breathing mode in the square lattice shown in Fig. A·1. The
Hubbard model can be written as

H2D ¼
X
ilj�

til; jc
y
ij�clj� þ

X
ijm�

ti; jmc
y
ij�cim�

þU
X
ij

cyij"cij"c
y
ij#cij#; ðA:1Þ

where cyij� creates an electron with spin σ at site ði; jÞ. In the
Heisenberg picture, the time evolution of the one-body
operator cyij�clm� is given by

d

dt
cyij�clm� ¼ �i

X
l0

tll0;mc
y
ij�cl0m� � i

X
m0

tl;mm0cyij�clm0�

þ i
X
i0

tii0; jc
y
i0j�clm� þ i

X
j 0

ti; jj 0c
y
ij 0�clm�

� iUðcylm ��clm �� � cyij ��cij ��Þcyij�clm�: ðA:2Þ
Using Eq. (A·2), we easily obtain

d

dt
ðcyij�clm� � cyab�ccd�Þ

¼ �i
X
l0

tll0;mc
y
ij�cl0m� þ

X
m0

tl;mm0cyij�clm0�

 !

� i
X
a0

taa0;bc
y
a0b�ccd� þ

X
b0

ta;bb0c
y
ab0�ccd�

 !

þ i
X
i0

tii0; jc
y
i0j�clm� þ

X
j 0

ti; jj 0c
y
ij 0�clm�

 !

þ i
X
c0

tcc0;dc
y
ab�cc0d� þ

X
d0

tc;dd0c
y
ab�ccd0�

 !

� iUðcylm ��clm �� � cyij ��cij ��Þcyij�clm�

þ iUðcycd ��ccd �� � cyab ��cab ��Þcyab�ccd�: ðA:3Þ
When we assume that the sites ði; jÞ and ðl; mÞ belong to the
even sublattice and the sites ða; bÞ and ðc; dÞ belong to the
odd sublattice, the sites ða0; bÞ, ða; b0Þ, ðc0; dÞ, and ðc; d 0Þ
belong to the even sublattice, and the sites ði0; jÞ, ði; j 0Þ,
ðl 0; mÞ, and ðl; m0Þ belong to the odd sublattice. Thus, the first
four terms can be regarded as current densities between the

two sublattices weighted by transfer integrals. In the last two
terms, we use the mean-field approximation to replace the
one-body operators with spin �� ¼ �� by their expectation
values. Because the sites ði; jÞ and ðl; mÞ [ða; bÞ and ðc; dÞ]
belong to the same sublattice, the last two terms vanish owing
to the translational symmetry. Thus, Eq. (A·3) is equivalent
to Eq. (15) for the charge-density difference between the
sublattices. Using Eq. (A·2), we also obtain

d

dt
ð�icyij�clm� þ icylm�cij�Þ

¼ �
X
l0

tll0;mðcyij�cl0m� þ cyl0m�cij�Þ

�
X
m0

tl;mm0 ðcyij�clm0� þ cylm0�cij�Þ

þ
X
i0

tii0; jðcyi0j�clm� þ cylm�ci0j�Þ

þ
X
j 0

ti; jj 0 ðcyij 0�clm� þ cylm�cij 0�Þ

þUðcyij ��cij �� � cylm ��clm ��Þðcyij�clm� þ cylm�cij�Þ; ðA:4Þ
and

d

dt
ðcyij�clm� þ cylm�cij�Þ

¼
X
l0

tll0;mð�icyij�cl0m� þ icyl0m�cij�Þ

þ
X
m0

tl;mm0 ð�icyij�clm0� þ icylm0�cij�Þ

�
X
i0

tii0; jð�icyi0j�clm� þ icylm�ci0j�Þ

�
X
j 0

ti; jj 0 ð�icyij 0�clm� þ icylm�cij 0�Þ

� Uðcyij ��cij �� � cylm ��clm ��Þð�icyij�clm� þ icylm�cij�Þ: ðA:5Þ
When we assume that the site ði; jÞ belongs to the even
sublattice and the site ðl; mÞ belongs to the odd sublattice, the
sites ðl 0; mÞ and ðl; m0Þ belong to the even sublattice, and the
sites ði0; jÞ and ði; j 0Þ belong to the odd sublattice. Then, the
first and second terms in Eqs. (A·4) and (A·5) are one-body
operators acting within the even sublattice, and the third and
fourth terms are ones acting within the odd sublattice. The
first four terms in Eq. (A·4) can be regarded as charge-
density differences between the two sublattices weighted
by transfer integrals. In the mean-field approximation,
Uðcyij ��cij �� � cylm ��clm ��Þ is replaced by Uhcyij ��cij �� �
cylm ��clm ��i ¼ U�n ¼ 2�, which is independent of ði; jÞ, ðl; mÞ,
or ��. The last term in Eq. (A·4) is regarded as (�2�) times
the bond density between sites ði; jÞ and ðl; mÞ. Thus,
Eq. (A·4) is equivalent to Eq. (16) for the current density
between the sublattices. The first and second (third and
fourth) terms in Eq. (A·5) can be regarded as current
densities within the even (odd) sublattice weighted by
transfer integrals, which give a small contribution and are
unimportant. [In momentum space, they can be eliminated by
the unitary transformation within each sublattice using e�i�k=2

in Eq. (8).] The last term in Eq. (A·5) can be regarded as
(�2�) times the current density between sites ði; jÞ and ðl; mÞ.
Thus, Eq. (A·5) is equivalent to Eq. (17) [though both sides
are multiplied by (−1)] for the bond density between the
sublattices.

Fig. A·1. (Color online) Notation used for the transfer integrals between
sites on the square lattice.
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It is now clear that a common factor U�n (¼ 2�) appears
independently of the relative position of sites ði; jÞ and ðl; mÞ.
When U is positive, the force in the last term of Eq. (A·4)
is applied in the direction of the current flow. [The current
direction is easily checked by setting ðl; mÞ ¼ ði; jÞ in
Eq. (A·2).] Thus, the charge-density difference between the
sublattices synchronizes the charge motion on different bonds
to achieve the electronic breathing mode.
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