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Many-electron dynamics induced by a symmetric monocycle electric-field pulse of large amplitude is theoretically
investigated in one- and two-dimensional half-filled extended Hubbard models on regular lattices (i.e., without
dimerization) using the exact diagonalization method for small systems and the Hartree–Fock approximation for large
systems. The formation of a negative-temperature state and the change from repulsive interactions to effective attractive
interactions are shown to be realized for a wide region of the field amplitude and the excitation energy. For a
nonnegligible intersite repulsive interaction, the numerical results are consistent with the fact that the phase separation
between charge-rich and charge-poor regions is caused by the corresponding effective attraction.

1. Introduction

Physical phenomena caused by intense optical pulses have
attracted much attention. For relatively weak pulses, various
photoinduced phase transitions are known to take place in
solids.1,2) Here, however, something qualitatively different
is expected. Among the states that have been proposed for
intense pulses, we focus on negative-temperature states.3,4)

For systems whose energy spectra are bounded above,
negative-temperature states are realized when high-energy
levels are occupied in such a way that the energy of the
system is higher than that of an equilibrium state at infinite
temperature.5–7) To form such a state, we need to increase
the energy of the system (i.e., occupy high-energy levels
selectively), suppressing the rise in the entropy (i.e., not
merely occupying various energy levels).

Two-level systems are typical ones for which negative-
temperature states are discussed. Many molecular materials
have dimerized structures in which bonding and antibond-
ing orbitals exist. They can be regarded as interacting two-
level systems that are linked through interdimer electron
transfers. The quasi-two-dimensional metal complex
Et2Me2Sb[Pd(dmit)2]2 (dmit = 1,3-dithiol-2-thione-4,5-di-
thiolate) is one of those strongly dimerized molecular
materials for which photoinduced phase transitions have
been experimentally8) and theoretically9–11) studied. It has a
charge-ordered ground state in which charge-rich and charge-
poor dimers are regularly arrayed. The model used for
this material is greatly simplified, keeping the dimerized
structure, into a one-dimensional three-quarter-filled strongly
dimerized extended Hubbard model with electron–phonon
couplings, for which the formation of a negative-temperature
state and the change from repulsive interactions to effective
attractive interactions are demonstrated in the band-insulator
phase using the exact diagonalization method.12) This model
is close to interacting two-level systems in that the intradimer
transfer integral is much larger than the interdimer transfer
integral.

For regular systems without dimerization, Tsuji et al. have
shown such changes of interactions in negative-temper-
ature states for continuous waves,3) half-cycle pulses, and
asymmetric monocycle pulses4) using the dynamical mean-
field theory for the half-filled Hubbard model. For continuous
waves, the modulation of the effective transfer integral is

known in the context of dynamical localization13–15) and
given by the time average of the transfer integral with the
Peierls phase factor. For very short pulses, the modulation is
explained through the dynamical phase shift on the basis of
the sudden approximation.4)

The dynamical phase shift is proportional to the time
integral of the electric field. In the sudden approximation,
when the dynamical phase shift is π, the sign of the Peierls
phase factor is instantaneously inverted and the band
structure is consequently inverted. For symmetric monocycle
pulses, the time integral of the electric field is zero, so that
the dynamical phase shift vanishes. For finite pulse widths,
symmetric monocycle pulses make little contribution, and
their effects are not sufficiently large to produce a negative-
temperature state, in the dynamical mean-field theory as
described in Ref. 4. However, negative-temperature states are
realized by symmetric monocycle pulses, as described in
Ref. 12, and explained by the total-energy increments.11) The
modulation of the effective transfer integral is defined
through the total-energy increment and described by the
zeroth-order Bessel function, as in the dynamical localization
for continuous waves, in the two-level system.11)

As mentioned above, the strongly dimerized model used
in Ref. 12 is close to interacting two-level systems. This
closeness may appear to be advantageous for the system to
increase the energy suppressing the rise in the entropy.
Regarding the fact that the repulsion-to-attraction conversion
is hardly realized by symmetric monocycle pulses applied to
the half-filled Hubbard model, in the dynamical mean-field
theory as described in Ref. 4, is the distance of the regular
Hubbard model from interacting two-level systems the
reason? In this paper, we show that the answer is no: the
formation of a negative-temperature state and the change
from repulsive interactions to effective attractive interactions
are achieved by a symmetric monocycle pulse applied to
the one- and two-dimensional half-filled extended Hubbard
models on regular lattices, i.e., without dimerization.
However, the total-energy increment is no longer described
by the zeroth-order Bessel function.

Photoinduced superconductivity is discussed in Ref. 3
using the Hubbard model that has only the on-site interaction
U. Real substances always have intersite interactions, which
are important for the exciton effect. From the viewpoint of
the possible inversion of interactions, the intersite interac-
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tions are important because they can cause phase separation
once they are converted into effective attractive interactions.
In this paper, we consider extended Hubbard models, which
have the nearest-neighbor interaction V in addition.

For phase separation, many theoretical studies have been
performed using the one-dimensional16) and two-dimen-
sional17) t–J models as well as the one-dimensional,18–22)

two-dimensional,23) and even higher-dimensional24) extended
Hubbard models at18) and near 24) half filling, at quarter
filling,19) and at general fillings.20–23) Many of them have
been motivated by a desire to clarify the mechanism of high-
temperature superconductivity. A superconducting state is
indeed anticipated near the instability toward phase separa-
tion. It is now known that phase separation is realized in a
rather wide region in the plane spanned by the interaction
strength and the filling. In general, when the intersite
interaction is attractive, phase separation is easily achiev-
ed.18–20,23) Thus, when the system has an intersite interaction
and the interactions are expected to be inverted by an intense
pulse, one must consider the possibility for phase separation.
In this paper, we employ the exact diagonalization method
for small systems and the Hartree–Fock approximation for
large systems to show that phase separation is indeed
possibly induced by an intense symmetric monocycle optical
pulse.

2. Extended Hubbard Model on Regular Lattice

Many-electron dynamics after strong photoexcitation is
studied in the half-filled extended Hubbard model,

H ¼ �t0
X
hi; ji;�

ðcyi;�cj;� þ cyj;�ci;�Þ

þ U
X
i

ni;" � 1

2

� �
ni;# � 1

2

� �

þ V
X
hi; ji

ðni � 1Þðnj � 1Þ; ð1Þ

where cyi;� creates an electron with spin σ at site i, ni;� ¼
cyi;�ci;�, and ni ¼

P
� ni;�. The transfer integral is denoted by

t0. The parameter U represents the on-site repulsion strength,
and V represents the nearest-neighbor repulsion strength. For
the one-dimensional lattice, we use the 12-site periodic chain.
For the two-dimensional lattice, we use the 4 � 3-site system
with the periodic boundary condition shown in Fig. 1.

Before the photoexcitation, the system is in the ground
state obtained by the exact diagonalization method unless
stated otherwise. Photoexcitation is introduced through the
Peierls phase

cyi;�cj;� ! exp
ie

ħc
rij � AðtÞ

� �
cyi;�cj;�; ð2Þ

where rij ¼ rj � ri and ri being the location of the ith site.
The right-hand side is substituted into Eq. (1). For symmetric
monocycle electric-field pulses, we use the time-dependent
vector potential

AðtÞ ¼ cF

!
½cosð!tÞ � 1��ðtÞ� 2�

!
� t

� �
; ð3Þ

where F ¼ ðF; FÞ is polarized in the ð1; 1Þ direction on the
square lattice (F ¼ F on the chain) and the central frequency
ω is chosen to be nearly resonant with the optical gap unless

stated otherwise. The time-dependent Schrödinger equation is
numerically solved by expanding the exponential evolution
operator with a time slice dt ¼ 0:01 to the 15th order and by
checking the conservation of the norm.25)

The kinetic energy is defined as the expectation value of
the first term in Eq. (1). The total energy is the expectation
value of Eq. (1), which becomes zero in equilibrium at
infinite temperature. We set t0 ¼ 1 as a unit of energy. The
interaction parameters U and V are varied. The intersite
distance is set to be a in any direction. The time-averaged
double occupancy is calculated by

hhni;"ni;#ii ¼ 1

tw

Z tsþtw

ts

h�ðtÞjni;"ni;#j�ðtÞi dt; ð4Þ

with ts ¼ 5T, tw ¼ 45T, and T ¼ 2�=! being the period
of the oscillating electric field. The other time-averaged
quantities are calculated likewise.

The systems to which the exact diagonalization method
can be applied are quite small, and their nonequilibrium
dynamics basically from the ground state can be discussed.
On the other hand, the dynamical mean-field theory can be
used to discuss the thermodynamic limit at finite temper-
atures from the beginning, but it uses a mapping to a single-
impurity problem, so that events in the momentum space
such as Fermi surface nesting or the Umklapp process are
included indirectly through the self-energy that is in the
second order with respect to electron transfers. Thus, it often
underestimates the tendency toward an insulator. Here only,
we use a half-cycle pulse and compare numerical results
obtained by the present exact diagonalization method with
those in the dynamical mean-field theory for the half-filled
Hubbard model (V ¼ 0).4) The details are shown in the
Appendix. In both approaches, we find (i) that negative-
temperature states appear when the Peierls phase shift after
the photoexcitation is near an odd multiple of π and U=ð4t0Þ
is not too large, and (ii) that, as the pulse width increases and
U=ð4t0Þ increases, the region where negative-temperature
states appear is shifted toward a larger Peierls phase shift.
These findings suggest that, for the formation of a negative-
temperature state, it does not matter whether the initial state is
metallic as in Ref. 4 or insulating as in the present study for
U ≠ 0.

3. States after Symmetric Monocycle Pulse Excitation in
Hubbard Model

Because the results for the one- and two-dimensional cases
are similar, we show them in the two-dimensional case.
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Fig. 1. 4 � 3 lattice with periodic boundary condition.
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Time-averaged quantities are shown in Fig. 2 as functions
of eaF=ħ! for U ¼ 4, 6, and 8. Around eaF=ħ! ¼ 3:7,
the time-averaged kinetic energy is positive [Fig. 2(a)].
This indicates that the momentum distributions at
�2t0½cosðkxÞ þ cosðkyÞ� > 0 are larger than those at
�2t0½cosðkxÞ þ cosðkyÞ� < 0. Note that a symmetric mono-
cycle pulse is used and consequently the Peierls phase returns
to the initial value. This is not caused by the band-structure
inversion through the dynamical phase shift; Umklapp
scattering is considered to be responsible. This change in
the momentum distributions is accompanied by a large
increase in the total energy. The total energy here is the sum
of the kinetic energy and U times the double occupancy
relative to its noninteracting value of 0.25 at half filling.

The time-averaged double occupancy hhni;"ni;#ii indeed
becomes larger than 0.25 for an eaF=ħ! region including the
region for positive time-averaged kinetic energies around
eaF=ħ! ¼ 3:7 [Fig. 2(b)]. It appears as if these nonequilib-
rium states possess an attractive on-site interaction. This is
caused by the fact that the energy supplied by photoexcitation
is distributed to both the kinetic energy and the interaction
energy. When the kinetic energy is positive and hhni;"ni;#ii >
0:25, the total energy is positive, i.e., it is larger than the
value taken by an equilibrium state at infinite temperature.
This total energy is treated as an order parameter in Ref. 4.

In the band-insulator phase of the one-dimensional three-
quarter-filled strongly dimerized extended Peierls–Hubbard
model, the region of eaF=ħ! where negative-temperature
states appear is almost independent of U, and hhni;"ni;#ii in

the negative-temperature state (i.e., its effective on-site
attraction) increases with U.12) Here, however, the situation
is not so simple. The value of eaF=ħ! where the local
maximum of the time-averaged kinetic energy appears or
where that of hhni;"ni;#ii appears depends on U. Furthermore,
in the band-insulator phase of the model above, the energy
flow into the electron–electron interaction terms is quite
small.12) In the present case, the insulating ground state is
caused by the electron–electron interaction term so that
the energy flow into this term is relatively large. This is
quantitatively discussed later in Sect. 4.

Such negative-temperature states accompanied by in-
verted on-site interactions appear in a wide ω region. Their
appearance is not limited to the case where ω is nearly
resonant with the optical gap. For U ¼ 4, the regions where
the time-averaged kinetic energy is positive and the regions
where hhni;"ni;#ii is larger than 0.25 are shown in Figs. 3(a)
and 3(b), respectively. Here, the plane is spanned by eaF=ħ!
and !=Eopt with Eopt being the optical gap. For each !=Eopt,
the upper and lower bounds of the region(s) are denoted by
inverted triangles and triangles, respectively. For ! ¼ 0:6Eopt

and 0:7Eopt, eaF=ħ! must be larger than 6 for the time-
averaged kinetic energy to be positive, but hhni;"ni;#ii > 0:25
is widely achieved. For ! ¼ 1:4Eopt and 1:5Eopt, eaF=ħ!
must be less than 4 for a positive time-averaged kinetic
energy and for hhni;"ni;#ii > 0:25. In this sense, the resonant
condition is optimum for these two phenomena and
consequently for a negative-temperature state to be formed.
The regions of eaF=ħ! for hhni;"ni;#ii > 0:25 contain those
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Fig. 2. (Color online) (a) Time-averaged kinetic energy and (b) time-
averaged double occupancy hhni;"ni;#ii as functions of eaF=ħ! for different
values of U. The other parameters are V ¼ 0, ! ¼ 2:4 for U ¼ 4, ! ¼ 3:43

for U ¼ 6, and ! ¼ 4:82 for U ¼ 8.

 0

 1
 2

 3
 4

 5
 6
 7
 8

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

ea
F

/
ω

ω /Eopt

U=4

KE>0

KE>0

(a)

h
 0
 1
 2
 3
 4
 5
 6
 7
 8

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

ea
F

/
ω

ω /Eopt

DO>0.25

DO>0.25

DO>0.25

(b)

h

Fig. 3. (Color online) (a) Regions where time-averaged kinetic energy is
positive, denoted by “KE > 0”, and (b) regions where hhni;"ni;#ii is larger
than 0.25, denoted by “DO > 0:25”, for U ¼ 4 in plane spanned by eaF=ħ!
and !=Eopt with Eopt being the optical gap.
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for positive time-averaged kinetic energies. Therefore, the
former regions are wider than the latter. In the one-
dimensional case, negative-temperature states accompanied
by inverted on-site interactions also appear in a wide U, ω
region.

4. States after Symmetric Monocycle Pulse Excitation in
Extended Hubbard Model

If both the on-site and intersite interactions are inverted,
we expect that the effective attractive interactions will cause
phase separation into a region of high-charge-density sites
and a region of low-charge-density sites, although their
boundaries fluctuate quantum-mechanically. How easily the
phase separation is realized depends on the dimensionality
through the nature of the fluctuating boundary. Thus, below
we compare the one-dimensional case, where the boundary
consists of two points, with the two-dimensional case, where
the boundary consists of a line.

4.1 One-dimensional case
Before the analysis of photoinduced states, we show the

V dependence of the double occupancy hni;"ni;#i and the
nearest-neighbor charge-density correlation hniniþ1i in the
ground states with U ¼ 8 and −8 in Fig. 4. When the
interactions are repulsive, the spin-density-wave (SDW)
correlation is dominant for V < U=2 þ �, and the charge-
density-wave (CDW) correlation is dominant for V > U=2 þ
�. Here, δ is a small positive quantity originating from spin
fluctuations that approaches zero in the t0 ! 0 limit. When
the SDW correlation is dominant, hni;"ni;#i is small and
hniniþ1i is almost 1. When the CDW correlation is dominant,
hniniþ1i is small and hni;"ni;#i is about 0.5. When the
interactions are attractive, phase separation is anticipated.
In this case, hni;"ni;#i is about 0.5, which is the average
of hni;"ni;#i ’ 1 on the high-charge-density sites and
hni;"ni;#i ’ 0 on the low-charge-density sites. Meanwhile,
hniniþ1i is about 1.67, which is the average of hniniþ1i ’ 4

on the bonds between high-charge-density sites and
hniniþ1i ’ 0 on the other bonds. In Fig. 4, we show the
results for V � �0:3 because the states for V � �0:4 are
numerically unstable.

Time-averaged quantities for U ¼ 8 with different values
of V are shown in Fig. 5 as functions of eaF=ħ!. In all the

cases shown here, there is a region around eaF=ħ! ¼ 3 for
positive time-averaged kinetic energies, although this region
is narrowed with increasing V [Fig. 5(a)]. In nearly the
same eaF=ħ! region, the time-averaged double occupancy
hhni;"ni;#ii becomes larger than 0.25 [Fig. 5(b)]: the effective
on-site interaction is attractive. On the other hand, where the
quantities shown in Figs. 5(a) and 5(b) are at local minima
around eaF=ħ! ¼ 4:5, the time-averaged nearest-neighbor
charge-density correlation hhniniþ1ii is at a local maximum
[Fig. 5(c)], and the total energy is at a local minimum
[Fig. 5(d)]. The corresponding time-averaged state ap-
proaches the ground state, although the former is not so
close to the latter compared with the corresponding time-
averaged state in the one-dimensional three-quarter-filled
strongly dimerized extended Peierls–Hubbard model, whose
total-energy increment is described reasonably well by the
zeroth-order Bessel function multiplied by the sine func-
tion12) as in the two-level system.11)

Where the quantities shown in Figs. 5(a) and 5(b) are at
the maxima around eaF=ħ! ¼ 3, hhniniþ1ii is at a local
maximum (minimum) for V ¼ 2 and 3 (V ¼ 0 and 1)
[Fig. 5(c)], and the total energy is positive and at the
maximum [Fig. 5(d)]. The state realized here is a negative-
temperature state. The fact that, for V ¼ 2 and 3, both
hhni;"ni;#ii and hhniniþ1ii are at local maxima in the
negative-temperature state indicates that phase separation is
realized here. To see how roughly the negative-temperature
state is interpreted as the ground state with the inverted
interactions, we compare the correlations in the ground states
for U ¼ 8 and V > 0 and for U ¼ �8 and V < 0 (Fig. 4). For
small and positive V (V ¼ 0:1 and 0.2), hniniþ1i is decreased
by the inversion of the interactions. This is in contrast to
the cases of V � 0:3, where both hni;"ni;#i and hniniþ1i are
increased by the inversion. The local minimum of hhniniþ1ii
around eaF=ħ! ¼ 3 for V ¼ 1 [Fig. 5(c)] should be caused
by the fact that V is small and the inversion of the interactions
is incomplete. As a matter of fact, hhniniþ1ii at the local
maximum is smaller (only slightly larger) than hniniþ1i in the
ground state for V ¼ 2 (V ¼ 3). Thus, the overall behaviors
of the correlations in the negative-temperature states are
consistent with those in the ground states with incompletely
inverted interactions. Compared with the inverted on-site
interaction, which makes the double occupancy larger than
0.25, the inverted intersite interaction is less effective. Note
that, in the ground state, the value of jVj required for phase
separation (U;V < 0) is generally much smaller than that for
the CDW (U;V > 0). In the thermodynamic limit and in the
t0 ! 0 limit, the former approaches zero but the latter is
proportional to U with a dimension-dependent coefficient.
From this viewpoint, even if the inversion of the intersite
interaction is incomplete, photoinduced phase separation is
feasible.

4.2 Two-dimensional case
First, we show the V dependence of the double occupancy

hni;"ni;#i and the average nearest-neighbor charge-density
correlation 1

2
hniniþx̂ þ niniþŷi, where x̂ and ŷ are the unit

vectors along the x- and y-axes, respectively, in the ground
states with U ¼ 8 and −8 in Fig. 6. When the interactions are
repulsive, the SDW correlation is dominant for V < U=4 þ �,
and the CDW correlation is dominant for V > U=4 þ �. Here,
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Fig. 4. (Color online) Double occupancy hni;"ni;#i and nearest-neighbor
charge-density correlation hniniþ1i as a function of V in ground states with
U ¼ 8 and −8.
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δ is not so small because the present 4 � 3 lattice is
incommensurate with the CDW with the wave vector of
ð�; �Þ. In the thermodynamic limit and in the t0 ! 0 limit, δ
approaches zero. Compared with the one-dimensional case,
the numerical instability for attractive interactions is greatly
suppressed. In the case of phase separation, hni;"ni;#i is about
0.5 and 1

2
hniniþx̂ þ niniþŷi is about 1.17, which is the average

of 1
2
hniniþx̂ þ niniþŷi ’ 4 on the bonds between high-charge-

density sites and 1
2
hniniþx̂ þ niniþŷi ’ 0 on the other bonds.

Note that the weight of the boundary bonds between the
high-charge-density sites and the low-charge-density sites is
much larger than that in the one-dimensional case, so that the

nearest-neighbor charge-density correlation here is substan-
tially smaller than that in the one-dimensional case. In other
words, the boundary degrees of freedom are much larger in
the 4 � 3 lattice than in the 12-site chain, so that the tendency
toward phase separation is much weaker in the 4 � 3 lattice.

Time-averaged quantities for U ¼ 8 with different values
of V are shown in Fig. 7 as functions of eaF=ħ!. Compared
with the V=2 dependence of the corresponding quantities in
the one-dimensional case, the present V dependence is
generally small, which is consistent with the fact that the
tendency toward phase separation is weaker in the two-
dimensional case. Then, we show the region of 1 <
eaF=ħ! < 4 to enlarge the view around the local maxima
of the total energy. The eaF=ħ! region for positive time-
averaged kinetic energies is shifted to the smaller eaF=ħ!
side with increasing V [Fig. 7(a)]. In a relatively wide region
including the eaF=ħ! region above, hhni;"ni;#ii becomes
larger than 0.25 [Fig. 7(b)]: the effective on-site interaction
is attractive whenever the time-averaged kinetic energy is
positive.

Where the quantities shown in Figs. 7(a) and 7(b) are at
the maxima around eaF=ħ! ¼ 3:5, 1

2
hhniniþx̂ þ niniþŷii is at

a local maximum (minimum) for V ¼ 1 and 1.5 (V ¼ 0)
[Fig. 7(c)], and the total energy is positive and at the
maximum [Fig. 7(d)]. Negative-temperature states are real-
ized here in a wide eaF=ħ! region because the U term assists
the total energy to become positive, while the V term does not
assist it at all (1

2
hhniniþx̂ þ niniþŷii is always smaller than 1).

The fact that, for V ¼ 1, 1.5 (shown here), 2, 2.5, and 3 (not
shown here), both hhni;"ni;#ii and 1

2
hhniniþx̂ þ niniþŷii are at

local maxima in the negative-temperature state indicates that
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phase separation is realized around eaF=ħ! ¼ 3:5 in the two-
dimensional case. Then, we compare the correlations in the
ground states for U ¼ 8 and V > 0 and for U ¼ �8 and
V < 0 (Fig. 6). For small and positive V (V ¼ 0:1 and 0.2),
1
2
hhniniþx̂ þ niniþŷii is decreased by the inversion of the

interactions. The absence of an apparent local maximum of
1
2
hhniniþx̂ þ niniþŷii around eaF=ħ! ¼ 3:5 for V ¼ 0:5

[Fig. 7(c)] should again be caused by the fact that V is small
and the inversion of the interactions is incomplete. As a
matter of fact, 1

2
hhniniþx̂ þ niniþŷii at the local maximum is

smaller (larger) than 1
2
hniniþx̂ þ niniþŷi in the ground state

for V ¼ 1 and 1.5 (V ¼ 2, 2.5, and 3) (not shown). Again, the
overall behaviors of the correlations in the negative-temper-
ature states are consistent with those in the ground states with
incompletely inverted interactions. Even though 1

2
hhniniþx̂ þ

niniþŷii at the local maximum is still smaller than 1 in
all cases in the present small system to which the exact
diagonalization method is applicable, a strong photoexcita-
tion may lead to phase separation in much larger systems.

Recall that the formation of a negative-temperature state
is generally obstructed by a large rise in the entropy. The
photoinduced phase separation is not obstructed by such an
effect. However, when we employ attractive interactions
(U;V < 0) and strongly excite phase-separating states, no
negative-temperature state is realized (not shown). The total
energy and the time-averaged kinetic energy remain negative
for any eaF=ħ! under both resonant and nonresonant
conditions. The time-averaged double occupancy is always
larger than 0.25. These facts indicate that it is difficult to
increase the total energy of an initially phase-separating state
without a large rise in the entropy. The entropy is easily

raised by exciting low-energy collective states corresponding
to the fluctuating boundary.

4.3 Hartree–Fock approximation for two-dimensional case
It is difficult to treat larger systems at half filling for

long periods of time by the exact diagonalization method.
However, in order to judge whether phase separation is really
achieved, we need to study the photoinduced dynamics of
larger systems anyway. Hereafter, we use the Hartree–Fock
approximation for larger systems with a periodic boundary
condition on the square lattice and compare the results for
different system sizes. The ground state is an SDW state. The
central frequency ω is chosen to be nearly resonant with the
optical gap in the time-dependent Hartree–Fock approxima-
tion. In expanding the exponential evolution operator, a time
slice of dt ¼ 10�3 is used. The time averaging is performed
using Eq. (4) with ts ¼ 100T and tw ¼ 50T. At first, in order
to compare results obtained by these methods, we show the
same quantities as in Fig. 7 as functions of eaF=ħ!. Here,
the kinetic and total energies are divided by the number of
sites for the comparison of results with different system sizes.
The data shown here are obtained for the 10 � 10 lattice, and
they coincide with the results for the 14 � 14 and 16 � 16

lattices within the symbol sizes. Although the value of
eaF=ħ! at which a local maximum=minimum of each
quantity appears deviates from the corresponding one
obtained by the exact diagonalization method, these results
obtained with the different methods show qualitatively
similar eaF=ħ! and V dependences.

In a region around eaF=ħ! ¼ 2:4, the time-averaged
kinetic energy and the total energy are positive [Figs. 8(a)
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Fig. 7. (Color online) (a) Time-averaged kinetic energy, (b) time-averaged double occupancy hhni;"ni;#ii, (c) time-averaged nearest-neighbor charge-density
correlation 1

2
hhniniþx̂ þ niniþŷii, and (d) total energy as functions of eaF=ħ! for different values of V. The other parameters are U ¼ 8, ! ¼ 4:82 for V ¼ 0,

! ¼ 4:75 for V ¼ 0:5, ! ¼ 4:64 for V ¼ 1, and ! ¼ 4:47 for V ¼ 1:5.
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and 8(d)]. However, their V dependence is opposite to that
obtained by the exact diagonalization method, although the V
dependence itself is rather weak. The total energy shows
a local maximum near eaF=ħ! ¼ 2:4, where hhni;"ni;#ii
becomes larger than 0.25 [Fig. 8(b)]. The effective on-site
attraction increases with V. Around eaF=ħ! ¼ 2:4,
1
2
hhniniþx̂ þ niniþŷii is at a local maximum (minimum) for

V ¼ 0:5, 1, and 1.5 (V ¼ 0) [Fig. 8(c)]. Now, 1
2
hhniniþx̂ þ

niniþŷii exceeds 1, but its maximum value is slightly over 1.
The behavior around eaF=ħ! ¼ 2:4 is consistent with the
appearance of phase separation, but 1

2
hhniniþx̂ þ niniþŷii is

considerably smaller than that in the phase-separating ground
state with the inverted on-site and intersite interactions.
This fact will be clarified below when the space and
time dependences are discussed. The maximum value of
1
2
hhniniþx̂ þ niniþŷii is insensitive to the system size, at least

up to the 16 � 16 lattice. As far as the quantities shown here
are concerned, they should already be close to those in the
thermodynamic limit. However, the space and time de-
pendences can be sensitive to the system size.

Snapshots of the charge-density distribution hnii are
shown in Fig. 9 at different times and on the 10 � 10 and
14 � 14 lattices. The contour lines for hnii ¼ 0:7, 1.0, and
1.3 are shown on their bases. The initial condition before the
photoexcitation is spatially uniform, so that hnii ¼ 1 at t ¼ 0.
However, the translational symmetry becomes spontaneously
broken after the photoexcitation. Then, the charge-density
distribution hnii fluctuates spatially and temporally. At first, a
large number of small high-density regions and low-density
regions appear. As time proceeds, some of them merge into
larger high-density regions and low-density regions. On the

10 � 10 lattice, there are two high-density regions at t ¼ 60

[Fig. 9(a)], and they have already merged into one at t ¼ 80

[Fig. 9(b)]. On the 14 � 14 lattice, there are two high-density
regions at t ¼ 160 [Fig. 9(c)], and they are about to merge
into one at t ¼ 200 [Fig. 9(d)]. For the 16 � 16 lattice, the
time when the high-density regions finally merge into one is
later than that for the 14 � 14 lattice.

Such a size dependence of domain dynamics is actually
reflected in a small but significant size dependence of
1
2
hhniniþx̂ þ niniþŷii. For U ¼ 8, V ¼ 1, and eaF=ħ! ¼ 2:4,

where 1
2
hhniniþx̂ þ niniþŷii shows a maximum, 1

2
hhniniþx̂ þ

niniþŷii ¼ 1:079 on the 10 � 10 lattice where the high-
density regions have already merged into one before ts
(the time averaging), 1

2
hhniniþx̂ þ niniþŷii ¼ 1:070 on the

14 � 14 lattice where the high-density regions have not yet
merged into one at ts þ tw, and 1

2
hhniniþx̂ þ niniþŷii ¼ 1:074

on the 16 � 16 lattice where the situation is similar to that on
the 14 � 14 lattice. On the 14 � 14 lattice, the existence of
more than one domain makes the boundary contribution
larger and the above correlation smaller than those on the
10 � 10 lattice. On the 16 � 16 lattice, the larger system size
makes the boundary contribution smaller and the above
correlation larger than those on the 14 � 14 lattice. The size
dependence of the time-averaged correlation above thus
originates from the timing of the merging and the relative
weight of the boundary degrees of freedom. In any case, the
time-averaged correlation above is almost saturated for these
system sizes and the size dependence is small.

The charge density in the high-density regions is not as
high as hnii ’ 2, and that in the low-density regions is not as
low as hnii ’ 0. This is regarded as being due to a rise in the

-1

-0.5

 0

 0.5

 1

 0.5  1  1.5  2  2.5  3

K
in

et
ic

 e
ne

rg
y 

pe
r 

si
te

eaF/ ω

U=8
Hartree-Fock(a)

V=0
V=0.5

V=1
V=1.5

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0.5  1  1.5  2  2.5  3

N
ea

re
st

-n
ei

gh
bo

r 
co

rr
el

at
io

n

eaF/ ω

(c)
V=0

V=0.5
V=1

V=1.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0.5  1  1.5  2  2.5  3

T
ot

al
 e

ne
rg

y 
pe

r 
si

te

eaF/ ω

(d)

V=0
V=0.5

V=1
V=1.5

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.5  1  1.5  2  2.5  3

D
ou

bl
e 

oc
cu

pa
nc

y

eaF/ ω

(b)

V=0
V=0.5

V=1
V=1.5

h h

hh

Fig. 8. (Color online) (a) Time-averaged kinetic energy per site, (b) time-averaged double occupancy hhni;"ni;#ii, (c) time-averaged nearest-neighbor
charge-density correlation 1

2
hhniniþx̂ þ niniþŷii, and (d) total energy per site as functions of eaF=ħ! obtained in Hartree–Fock approximation for different

values of V. The other parameters are U ¼ 8, ! ¼ 7:0 for V ¼ 0, ! ¼ 6:6 for V ¼ 0:5, ! ¼ 6:2 for V ¼ 1, and ! ¼ 5:8 for V ¼ 1:5.
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entropy. The rise in the entropy is not so large as to obstruct
the formation of a negative-temperature state, but it is
significant, so that the charge disproportionation is small.
This is the reason why the quantities shown in Fig. 8 are
insensitive to the system size and the reason why the
maximum value of 1

2
hhniniþx̂ þ niniþŷii is slightly over 1.

Even though the charge disproportionation is small, Fig. 9
shows a nonequilibrium phase-separating state, which is
quantitatively different from the phase-separating ground
state with the completely inverted on-site and intersite
interactions. The inversion of the intersite interaction is
incomplete, namely, the effective intersite interaction be-
comes negative, but its magnitude is smaller than the initial
value. Therefore, the previous results obtained by the exact
diagonalization method for a small system are consistent with
the present Hartree–Fock results and the anticipation of
photoinduced phase separation in sufficiently large systems.

5. Conclusions and Discussion

Many-electron dynamics in the one- and two-dimensional
half-filled extended Hubbard models after the application of a
symmetric monocycle electric-field pulse are calculated using
the exact diagonalization method for small systems and the
Hartree–Fock approximation for large systems. The appear-
ance of negative-temperature states is demonstrated by their
total energies higher than that in an equilibrium state at
infinite temperature. They are characterized by inverted on-
site and nearest-neighbor interactions, which are roughly
estimated from the field-amplitude dependence of time-
averaged correlation functions. The important point is that,
even by applying symmetric monocycle pulses and even in
models on regular lattices without dimerization, negative-
temperature states are realized in a wide region spanned by

the field amplitude and the photoexcitation energy. Under
nearly the same conditions, the time-averaged double
occupancy is larger than that of the noninteracting equi-
librium state, and thus the on-site interaction is effectively
inverted. In addition, if the nearest-neighbor repulsion is
not very small, the time-averaged nearest-neighbor charge-
density correlation shows a local maximum as a function of
the field amplitude. Although the inversion of the interactions
is incomplete, the intersite interaction is also inverted. These
field-amplitude and intersite-interaction dependences of the
time-averaged correlation functions are consistent with the
anticipated photoinduced phase separation.

The difficulty of forming a negative-temperature state by
applying a symmetric monocycle pulse in the dynamical
mean-field theory for the half-filled Hubbard model4) may be
caused by the fact that Umklapp scattering is included
indirectly through the self-energy in the theory, where the
momentum space is basically irrelevant. The fact that the
kinetic energy becomes positive and consequently the
momentum distribution does not return to the initial one
after intense irradiation of a symmetric monocycle pulse
suggests the importance of the Umklapp process. Thus, it
would be desirable to treat the momentum space or the real
space in a direct manner. The present approach is expected
to be suitable for the discussion of negative-temperature
states. Photoinduced superconductivity is proposed using the
Hubbard model.3) Real substances always have intersite
repulsions, so that photoinduced phase separation can be
realized once the intersite interactions are effectively
inverted: not only two electrons but many electrons attract
each other. As to phase separation, a spatially extended
region must be treated to account for the gradual space
dependence of the charge density. In this context, it would be
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J. Phys. Soc. Jpn. 84, 094705 (2015) H. Yanagiya et al.

094705-8 ©2015 The Physical Society of Japan



better to supplement the exact diagonalization study with
Hartree–Fock studies, as in this paper. Generally, a super-
conducting state with a high transition temperature is
expected to be realized near some electronic instability.
Phase separation has been discussed extensively in this
context. Namely, in the vicinity of a phase-separating state,
superconductivity with an electronic mechanism has been
anticipated.16–24) As the possibility of photoinduced phase
separation is enhanced, that of photoinduced superconduc-
tivity should also be enhanced.

In our numerical calculations, as the system size increases,
it requires a longer time for high-density or low-density
regions to merge into one. This is due to the initial condition
in which the charge density is spatially uniform. In real
substances at finite temperatures, electron–phonon interac-
tions exist and thermal lattice fluctuations should exert a
random force on electrons, so that high-density or low-
density regions should easily appear, be activated to move
around, and encounter similar-density regions that they
merge with. Unless the system is biased externally, however,
such regions can appear anywhere in the sample. We expect
that an external bias such as a DC electric field would assist
macroscopic phase separation with an anomalous dielectric
property. Although the electron configuration in the ground
state is determined so that the total energy is minimized, that
in the photoinduced state with the largest total energy is
determined in the opposite manner: the instability is a key
because the realized state is the most unstable state among the
photoinduced states. We expect that the negative-temperature
state in real substances would decay rapidly through every
channel, interacting with phonons, photons, and electrons in
the environment. The lifetime of the negative-temperature
state would be short especially when the system has a
complex structure and interacts with many degrees of
freedom.
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Appendix: Negative-Temperature States Induced by
Half-Cycle Pulse

Here only, we consider the half-cycle cosine pulse used in
Ref. 4, which is in the present formulation written as

AðtÞ ¼ � ħc
ea

ðA; AÞ t

�
� 1

2�
sin

2�t

�

� �� �
�ðtÞ�ð� � tÞ; ðA:1Þ

with τ being the pulse width. It is applied to the half-filled
Hubbard model (V ¼ 0) on the 4 � 3 lattice. We use the
notation A, as in Ref. 4, which is the magnitude of the Peierls
phase shift for the electron transfer in any direction.

The energy dependence of the density of states is different
from that used in Ref. 4. Then, here, we take the half-
bandwidth in the noninteracting case, 4t0, as a unit of energy.
The dimensionless repulsion strength is U=ð4t0Þ and the
dimensionless pulse width is 4t0�. The region where the
total energy is positive after the photoexcitation, i.e., where

negative-temperature states appear, is surrounded by the
dashed line for the delta-function pulse (� ! 0) and by the
dotted line for the pulse with width 4t0� ¼ 10 in Fig. A·1.
For the delta-function pulse, this region is symmetric with
respect to the A ¼ � line. For the pulse with finite width, this
region is shifted to the larger A side as U=ð4t0Þ increases.
These results are consistent with those in the dynamical
mean-field theory.4) A negative-temperature state is formed
by the Peierls phase shift as well in the present system.
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